Skip to main content
Log in

Molecular Layering in Nanometer-Confined Lubricants

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molecular layering of liquids in nanometer-scale confinement is demonstrated for typical lubricant constituents such as polyalphaolefins (PAO) and an ester by means of atomic force microscopy. Layering is observed in force vs. distance curves for poly-(1-decene) tetramers (PAO6) and undecamers (PAO40) and for a 2-ethylhexyl monoester on graphite, mica, and polished steel surfaces and is compared to the layering of hexadecane and 1-hexadecene. On graphite surfaces, the confined molecules are oriented parallel to the surfaces for all liquids, resulting in layers with a thickness comparable to the diameter of the alkyl chains. On mica, confined hexadecane molecules also lie parallel to the surface, while the molecules in the first layer of 1-hexadecene and PAOs take a more upright orientation. Confinement on the oxidized polished steel surfaces results in a molecular layering which most often resembles the layering on graphite and differs significantly from layering on the ionic oxide mica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao, J.P., Luedtke, W.D., Landman, U.: Structure and solvation forces in confined films: linear and branched alkanes. J. Chem. Phys. 106(10), 4309 (1997)

    Article  Google Scholar 

  2. Christenson, H.K., Gruen, D.W.R., Horn, R.G., Israelachvili, J.N.: Structuring in liquid alkanes between solid-surfaces—force measurements and mean-field theory. J. Chem. Phys. 87(3), 1834 (1987)

    Article  Google Scholar 

  3. Zhu, Y.X., Granick, S.: Superlubricity: a paradox about confined fluids resolved. Phys. Rev. Lett. 93(9), 096101 (2004)

    Article  Google Scholar 

  4. Bureau, L.: Rate effects on layering of a confined linear alkane. Phys. Rev. Lett. 99(22), 225503 (2007)

    Article  Google Scholar 

  5. Nakada, T.: Atomic force microscopic study of subsurface ordering and structural transforms in n-alcohol on mica and graphite. Jpn. J. Appl. Phys. Part 2-Lett. 35(1A), L52 (1996)

    Article  Google Scholar 

  6. Franz, V., Butt, H.J.: Confined liquids: solvation forces in liquid alcohols between solid surfaces. J. Phys. Chem. B 106(7), 1703 (2002)

    Article  Google Scholar 

  7. Gosvami, N.N., Sinha, S.K., Hofbauer, W., O’Shea, S.J.: Solvation and squeeze out of hexadecane on graphite. J. Chem. Phys. 126(21), 214708 (2007)

    Article  Google Scholar 

  8. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115(13), 6357 (2015)

    Article  Google Scholar 

  9. Vanalsten, J., Granick, S.: Molecular tribometry of ultrathin liquid-films. Phys. Rev. Lett. 61(22), 2570 (1988)

    Article  Google Scholar 

  10. Krass, M.D., Gosvami, N.N., Carpick, R.W., Müser, M.H., Bennewitz, R.: Dynamic shear force microscopy of viscosity in nanometer-confined hexadecane layers. J. Phys. 28(13), 134004 (2016)

    Google Scholar 

  11. Rudnick, L., Shubkin, R.: Synthetic lubricants and high- performance functional fluids, revised and expanded. In: Rudnick, L., Shubkin, R. (eds.) Chemical Industries, pp. 3–52. CRC Press, Boca Raton (1999)

    Google Scholar 

  12. Green, C., Lioe, H., Cleveland, J., Proksch, R., Mulvaney, P., Sader, J.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75(6), 1988 (2004)

    Article  Google Scholar 

  13. Hoth, J., Hausen, F., Mueser, M.H., Bennewitz, R.: Force microscopy of layering and friction in an ionic liquid. J. Phys. 26(28), 284110 (2014)

    Google Scholar 

  14. Xu, R.G., Xiang, Y., Leng, Y.S.: Computational simulations of solvation force and squeezing out of dodecane chain molecules in an atomic force microscope. J. Chem. Phys. 147(5), 054705 (2017)

    Article  Google Scholar 

  15. Kong, L.T., Denniston, C., Muser, M.H.: The crucial role of chemical detail for slip-boundary conditions: molecular dynamics simulations of linear oligomers between sliding aluminum surfaces. Model. Simul. Mater. Sci. Eng. 18(3), 034004 (2010)

    Article  Google Scholar 

  16. Cui, S.T., Cummings, P.T., Cochran, H.D.: Effect of branches on the structure of narrowly confined alkane fluids: n-hexadecane and 2,6,11,15-tetramethylhexadecane. J. Chem. Phys. 114(14), 6464 (2001)

    Article  Google Scholar 

  17. Gosvami, N.N., Sinha, S.K., O’Shea, S.J.: Squeeze-out of branched alkanes on graphite. Phys. Rev. Lett. 100(7), 076101 (2008)

    Article  Google Scholar 

  18. Lim, R.Y.H., O’Shea, S.J.: Discrete solvation layering in confined binary liquids. Langmuir 20(12), 4916 (2004)

    Article  Google Scholar 

  19. Gobbo, C., Beurroies, I., de Ridder, D., Eelkema, R., Marrink, S.J., De Feyter, S., van Esch, J.H., de Vries, A.H.: Martini model for physisorption of organic molecules on graphite. J. Phys. Chem. C 117(30), 15623 (2013)

    Article  Google Scholar 

  20. Gosvami, N.N., O’Shea, S.J.: Nanoscale trapping and squeeze-out of confined alkane monolayers. Langmuir 31(47), 12960 (2015)

    Article  Google Scholar 

  21. McGuiggan, P.M.: The boundary lubrication properties of model esters. Tribol. Lett. 11(1), 49 (2001)

    Article  Google Scholar 

  22. Crossley, J.: Dielectric-relaxation of 1-alkenes. J. Chem. Phys. 58(12), 5315 (1973)

    Article  Google Scholar 

  23. Cooper, P.K., Wear, C.J., Li, H., Atkin, R.: Ionic liquid lubrication of stainless steel: friction is inversely correlated with interfacial liquid nanostructure. ACS Sustain. Chem. Eng. 5(12), 11737 (2017)

    Article  Google Scholar 

  24. Liu, P.Z., Lu, J., Yu, H.L., Ren, N., Lockwood, F.E., Wang, Q.J.: Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. J. Chem. Phys. 147(8), 084904 (2017)

    Article  Google Scholar 

  25. Lahtela, M., Pakkanen, T.A., Nissfolk, F.: Molecular modeling of poly-alpha-olefin synthetic oils. J. Phys. Chem. 99(25), 10267 (1995)

    Article  Google Scholar 

  26. Guangteng, G., Spikes, H.A.: The control of friction by molecular fractionation of base fluid mixtures at metal surfaces. Tribol. Trans. 40(3), 461 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Stefan Brück for NMR analysis, Yuliya Silina and Claudia Fink-Straube for the gel chromatography, and Eduard Arzt for his continuous support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Bennewitz.

Additional information

Marc-Dominik Krass and Günther Krämer have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krass, MD., Krämer, G., Dellwo, U. et al. Molecular Layering in Nanometer-Confined Lubricants. Tribol Lett 66, 87 (2018). https://doi.org/10.1007/s11249-018-1041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1041-y

Keywords

Navigation