Scratching an Al/Si Interface: Molecular Dynamics Study of a Composite Material

Abstract

We study scratching of a composite built from two widely different materials, a ductile and soft metal (Al) and a hard and brittle ceramic (Si). When scratching far away from the interface, the response of the pure elemental materials is monitored. A higher hardness and a lower friction coefficient are found for Si as compared to Al. The pile-up in Al is larger than in Si. When scratching along the interface, the composite responds approximately with the averaged behavior of the two pure materials. This applies to the forces as well as to the hardness and the friction coefficient. However, we observe a peculiar material flow, which can be described by a rotation around the scratch direction, inducing material mixing both in the groove bottom and in the pile-up; the harder Si expands on the groove bottom, while the softer Al expands in the pile-up region. When scratching across the interface, the material response switches on a length scale of the order of the contact radius. While the friction coefficient and the contact pressure switch from and to the values of the respective pure material, the behavior of the forces and areas is more complex. This is in particular due to the lateral pile-up that forms differently on the ductile metal and the amorphized Si parts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Elmadagli, M., Perry, T., Alpas, A.T.: A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys. Wear 262, 79 (2007)

    Article  Google Scholar 

  2. 2.

    Chen, M., Meng-Burany, X., Perry, T.A., Alpas, A.T.: Micromechanisms and mechanics of ultra-mild wear in Al-Si alloys. Acta Mater. 56, 5605–5616 (2008)

    Article  Google Scholar 

  3. 3.

    Joseph, S., Kumar, S., Bhadram, V.S., Narayana, C.: Stress states in individual Si particles of a cast al-si alloy: micro-Raman analysis and microstructure based modeling. J. Alloys Compd. 625, 296–308 (2015)

    Article  Google Scholar 

  4. 4.

    Prashanth, K.G., Debalina, B., Wang, Z., Gostin, P.F., Gebert, A., Calin, M., Kühn, U., Kamaraj, M., Scudino, S., Eckert, J.: Tribological and corrosion properties of Al-12Si produced by selective laser melting. J. Mater. Res. 29, 2044–2054 (2014)

    Article  Google Scholar 

  5. 5.

    Mahato, A., Sachdev, A., Biswas, S.K.: Lubricated tribology of a eutectic aluminium-silicon alloy in the ultra-mild wear and mild wear regimes for long sliding times. ACS Appl. Mater. Interfaces 2, 2870–2879 (2010)

    Article  Google Scholar 

  6. 6.

    Dienwiebel, M., Pöhlmann, K., Scherge, M.: Origins of the wear resistance of AlSi cylinder bore surfaces studies by surface analytical tools. Tribol. Int. 40, 1597–1602 (2007)

    Article  Google Scholar 

  7. 7.

    Riahi, A.R., Perry, T., Alpas, A.T.: Scuffing resistances of Al-Si alloys: effects of etching condition, surface roughness and particle morphology. Mater. Sci. Eng. A 343, 76–81 (2003)

    Article  Google Scholar 

  8. 8.

    Das, S., Perry, T., Biswas, S.K.: Effect of surface etching on the lubricated sliding wear of an eutectic aluminium-silicon alloy. Tribol. Lett. 21, 193–204 (2006)

    Article  Google Scholar 

  9. 9.

    Mahato, A., Perry, T.A., Jayaram, V., Biswas, S.K.: Pressure and thermally induced stages of wear in dry sliding of a steel ball against an aluminium-silicon alloy flat. Wear 268, 1080–1090 (2010)

    Article  Google Scholar 

  10. 10.

    Elmadagli, M., Alpas, A.T.: Sliding wear of an Al-18.5 wt% Si alloy tested in an argon atmosphere and against DLC coated counterfaces. Wear 261, 823–834 (2006)

    Article  Google Scholar 

  11. 11.

    Alhafez, I.A., Brodyanski, A., Kopnarski, M., Urbassek, H.M.: Influence of tip geometry on nanoscratching. Tribol. Lett. 65, 26 (2017)

    Article  Google Scholar 

  12. 12.

    Kelchner, C.L., Plimpton, S.J., Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)

    Article  Google Scholar 

  13. 13.

    Li, J., Van Vliet, K.J., Zhu, T., Yip, S., Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002)

    Article  Google Scholar 

  14. 14.

    Ziegenhain, G., Urbassek, H.M., Hartmaier, A.: Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J. Appl. Phys. 107, 061807 (2010)

    Article  Google Scholar 

  15. 15.

    Hagelaar, J.H.A., Bitzek, E., Flipse, C.F.J., Gumbsch, P.: Atomistic simulations of the formation and destruction of nanoindentation contacts in tungsten. Phys. Rev. B 73, 045425 (2006)

    Article  Google Scholar 

  16. 16.

    Gao, Y., Ruestes, C.J., Urbassek, H.M.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. 90, 232–240 (2014)

    Article  Google Scholar 

  17. 17.

    Gao, Y., Brodyanski, A., Kopnarski, M., Urbassek, H.M.: Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput. Mater. Sci. 103, 77–89 (2015)

    Article  Google Scholar 

  18. 18.

    Alhafez, I.A., Ruestes, C.J., Gao, Y., Urbassek, H.M.: Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks. Nanotechnology 27, 045706 (2016)

    Article  Google Scholar 

  19. 19.

    Goel, S., Faisal, N.H., Luo, X., Yan, J., Agrawal, A.: Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D 47, 275304 (2014)

    Article  Google Scholar 

  20. 20.

    Zhang, Z., Stukowski, A., Urbassek, H.M.: Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput. Mater. Sci. 119, 82–89 (2016)

    Article  Google Scholar 

  21. 21.

    Zhang, Z., Urbassek, H.M.: Indentation into an Al-Si composite: enhanced dislocation mobility at interface. J. Mater. Sci. 53, 799–813 (2018)

    Article  Google Scholar 

  22. 22.

    Fang, T.-H., Jia-Hung, W.: Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comput. Mater. Sci. 43, 785–790 (2008)

    Article  Google Scholar 

  23. 23.

    Shen, Y.-L., Blada, C.B., Williams, J.J., Chawla, N.: Cyclic indentation behavior of metal-ceramic nanolayered composites. Mater. Sci. Eng. A 557, 119–125 (2012)

    Article  Google Scholar 

  24. 24.

    Jun, S., Lee, Y., Kim, S.Y., Im, S.: Large-scale molecular dynamics simulations of Al(111) nanoscratching. Nanotechnology 15, 1169–1174 (2004)

    Article  Google Scholar 

  25. 25.

    Alhafez, I.A., Urbassek, H.M.: Scratching of hcp metals: a molecular-dynamics study. Comput. Mater. Sci. 113, 187–197 (2016)

    Article  Google Scholar 

  26. 26.

    Zarudi, I., Cheong, W.C.D., Zou, J., Zhang, L.C.: Atomistic structure of monocrystalline silicon in surface nano-modification. Nanotechnology 15, 104 (2004)

    Article  Google Scholar 

  27. 27.

    Mylvaganam, K., Zhang, L.C.: Nanotwinning in monocrystalline silicon upon nanoscratching. Scr. Mater. 65, 214–216 (2011)

    Article  Google Scholar 

  28. 28.

    Goel, S., Kovalchenko, A., Stukowski, A., Cross, G.: Influence of microstructure on the cutting behaviour of silicon. Acta Mater. 105, 464–478 (2016)

    Article  Google Scholar 

  29. 29.

    Noreyan, A., Qi, Y., Stoilov, V.: Critical shear stresses at aluminum-silicon interfaces. Acta Mater. 56, 3461–3469 (2008)

    Article  Google Scholar 

  30. 30.

    Zhang, Z., Urbassek, H.M.: Dislocations penetrating an Al-Si interface. AIP Adv. 7, 125119 (2017)

    Article  Google Scholar 

  31. 31.

    Saidi, P., Frolov, T., Hoyt, J.J., Asta, M.: An angular embedded atom method interatomic potential for the aluminum-silicon system. Model. Simul. Mater. Sci. Eng. 22, 055010 (2014)

    Article  Google Scholar 

  32. 32.

    Mendelev, M.I., Kramer, M.J., Becker, C.A., Asta, M.: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723–1750 (2008)

    Article  Google Scholar 

  33. 33.

    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of Si. Phys. Rev. B 31, 5262–5271 (1985)

    Article  Google Scholar 

  34. 34.

    Gao, Y., Ruestes, C.J., Tramontina, D.R., Urbassek, H.M.: Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Sol. 75, 58–75 (2015)

    Article  Google Scholar 

  35. 35.

    Godet, J., Pizzagalli, L., Brochard, S., Beauchamp, P.: Theoretical study of dislocation nucleation from simple surface defects in semiconductors. Phys. Rev. B 70, 054109 (2004)

    Article  Google Scholar 

  36. 36.

    Chrobak, D., Tymiak, N., Beaber, A., Ugurlu, O., Gerberich, W.W., Nowak, R.: Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nanotechnol. 6, 480 (2011)

    Article  Google Scholar 

  37. 37.

    Hale, L.M., Zhang, D.-B., Zhou, X., Zimmerman, J.A., Moody, N.R., Dumitrica, T., Ballarini, R., Gerberich, W.W.: Dislocation morphology and nucleation within compressed Si nanospheres: a molecular dynamics study. Comput. Mater. Sci. 54, 280–286 (2012)

    Article  Google Scholar 

  38. 38.

    Zhang, Z., Urbassek, H.M.: Comparative study of interatomic interaction potentials for describing indentation into Si using molecular dynamics simulation. Appl. Mech. Mater. 869, 3–8 (2017)

    Article  Google Scholar 

  39. 39.

    Zhang, Z., Urbassek, H.M.: Dislocation-based strengthening mechanisms in metal-matrix nanocomposites: a molecular dynamics study of the influence of reinforcement shape in the Al-Si system. Comput. Mater. Sci. 145, 109–115 (2018)

    Article  Google Scholar 

  40. 40.

    Alcalá, J., Dalmau, R., Franke, O., Biener, M., Biener, J., Hodge, A.: Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Phys. Rev. Lett. 109, 075502 (2012)

    Article  Google Scholar 

  41. 41.

    Ruestes, C.J., Bringa, E.M., Gao, Y., Urbassek, H.M.: Molecular dynamics modeling of nanoindentation. In: Tiwari, A., Natarajan, S. (eds.) Applied Nanoindentation in Advanced Materials, pp. 313–345. Wiley, Chichester (2017)

    Google Scholar 

  42. 42.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). http://lammps.sandia.gov/

  43. 43.

    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). http://www.ovito.org/

  44. 44.

    Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)

    Article  Google Scholar 

  45. 45.

    Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)

    Article  Google Scholar 

  46. 46.

    Stukowski, A., Arsenlis, A.: On the elastic-plastic decomposition of crystal deformation at the atomic scale. Model. Simul. Mater. Sci. Eng. 20, 035012 (2012)

    Article  Google Scholar 

  47. 47.

    Honeycutt, J.D., Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)

    Article  Google Scholar 

  48. 48.

    Clarke, A.S., Jonsson, H.: Structural changes accompanying densification of random hard-sphere packings. Phys. Rev. B 47, 3975 (1993)

    Article  Google Scholar 

  49. 49.

    Maras, E., Trushin, O., Stukowski, A., Ala-Nissila, T., Jonsson, H.: Global transition path search for dislocation formation in Ge on Si(001). Comput. Phys. Commun. 205, 13–21 (2016)

    Article  Google Scholar 

  50. 50.

    Alhafez, I.A., Ruestes, C.J., Urbassek, H.M.: Size of the plastic zone produced by nanoscratching. Tribol. Lett. 66, 20 (2018)

    Article  Google Scholar 

  51. 51.

    Moore, A.J.W., Tegart, W.J.M.: Relation between friction and hardness. Proc. R. Soc. Lond. A 212, 452–458 (1952)

    Article  Google Scholar 

Download references

Acknowledgements

Simulations were performed at the High Performance Cluster Elwetritsch (RHRK, TU Kaiserslautern, Germany). We acknowledge the financial support of the Deutsche Forschungsgemeinschaft via the IRTG 2057 and the SFB 926.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Herbert M. Urbassek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Alabd Alhafez, I. & Urbassek, H.M. Scratching an Al/Si Interface: Molecular Dynamics Study of a Composite Material. Tribol Lett 66, 86 (2018). https://doi.org/10.1007/s11249-018-1038-6

Download citation

Keywords

  • Metal matrix composites
  • Atomistic simulation
  • Scratching
  • Al/Si interface
  • Hardness