Skip to main content
Log in

Ultralow Friction Between Steel Surfaces Achieved by Lubricating with Liquid Crystal After a Running-in Process with Acetylacetone

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A suitable running-in process is advantageous for reducing friction. The aim of the present work was to study the influence of the running-in with acetylacetone on tribological performance of 4-Cyano-4’-pentylbiphenyl (5CB) liquid crystal. Friction tests were performed between steel surfaces in a ball-on-disk sliding system. After a running-in period of 240 s, the COF of 5CB was measured to be 0.013, which is about a quarter of the value (0.055) without running-in. The reduced contact pressure, caused in running-in process, does not directly lead to a drop in COF. The generation of tris(acetylacetonato) iron(III) induced by the tribochemical reactions between acetylacetone and steel surfaces, and the unique physical properties of liquid crystal are assumed to be reasons for the ultralow COF. Surface analysis was performed to correlate COF with the topography of wear surfaces. An evenly distributed specific grooved structure observed on wear area of the ball may have a beneficial effect on COF as well. We believe our findings can provide an effective and simple solution to reduce COF of liquid crystal between steel surfaces. A better understanding of the tribological behavior is needed for the development of this tribological system and for the possible future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Erdemir, A., Holmberg, K.: Energy Consumption due to Friction in Motored Vehicles and Low-Friction Coatings to Reduce it. Springer, New York (2015)

    Book  Google Scholar 

  2. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction. 5(3), 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5

    Article  Google Scholar 

  3. Carrion, F.J., Martinez-Nicolas, G., Iglesias, P., Sanes, J., Bermudez, M.D.: Liquid crystals in tribology. Int. J. Mol. Sci. 10(9), 4102–4115 (2009). https://doi.org/10.3390/ijms10094102

    Article  Google Scholar 

  4. Bermudez, M.D., Jimenez, A.E., Sanes, J., Carrion, F.J.: Ionic liquids as advanced lubricant fluids. Molecules. 14(8), 2888–2908 (2009). https://doi.org/10.3390/molecules14082888

    Article  Google Scholar 

  5. Amann, T., Gatti, F., Oberle, N., Kailer, A., Rühe, J.: Galvanically induced potentials to enable minimal tribochemical wear of stainless steel lubricated with sodium chloride and ionic liquid aqueous solution. Friction. 6(2), 230–242 (2018). https://doi.org/10.1007/s40544-017-0198-y

    Article  Google Scholar 

  6. Prost, J.: The physics of liquid crystals. vol. 83. Oxford University Press, Oxford (1995)

    Google Scholar 

  7. Bahadur, B.: Liquid crystals: applications and uses, vol. 1. World scientific Publishing, Singapore (1990)

    Book  Google Scholar 

  8. Biresaw, G.: Tribology and the liquid-crystalline state. ACS Publications, Washington, DC (1990)

    Book  Google Scholar 

  9. Fischer, T.E., Bhattacharya, S., Salher, R., Lauer, J.L., Ahn, Y.J.: Lubrication by a smectic liquid crystal. Tribol. Trans. 31(4), 442–448 (1988). https://doi.org/10.1080/10402008808981846

    Article  Google Scholar 

  10. Mori, S., Iwata, H.: Relationship between tribological performance of liquid crystals and their molecular structure. Tribol. Int. 29(1), 35–39 (1996)

    Article  Google Scholar 

  11. Sulek, M.W., Wasilewski, T.: Antiseizure properties of aqueous solutions of compounds forming liquid crystalline structures. Tribol. Lett. 18(2), 197–205 (2005). https://doi.org/10.1007/s11249-004-1776-5

    Article  Google Scholar 

  12. Tadokoro, C., Nihira, T., Nakano, K.: Minimization of friction at various speeds using autonomous viscosity control of nematic liquid crystal. Tribol. Lett. 56(2), 239–247 (2014). https://doi.org/10.1007/s11249-014-0404-2

    Article  Google Scholar 

  13. Ważyńska, B., Okowiak, J.A.: Tribological properties of nematic and smectic liquid crystalline mixtures used as lubricants. Tribol. Lett. 24(1), 1–5 (2006). https://doi.org/10.1007/s11249-006-9049-0

    Article  Google Scholar 

  14. Kupchinov, B.I.: Tribology and the liquid-crystalline state. J. Frict. Wear. 30(3), 169–171 (2009). https://doi.org/10.3103/s1068366609030039

    Article  Google Scholar 

  15. Ważyńska, B., Tykarska, M., Okowiak-Chinalska, J.: The estimation of abilities of liquid-crystalline compounds dissolved in paraffin oil for accumulation on solid surface. Mol. Cryst. Liq. Cryst. (2011). https://doi.org/10.1080/15421406.2011.571951

    Google Scholar 

  16. Ghosh, P., Upadhyay, M., Das, M.K.: Studies on the additive performance of liquid crystal blended polyacrylate in lubricating oil. Liq. Cryst. 41(1), 30–35 (2013). https://doi.org/10.1080/02678292.2013.831132

    Article  Google Scholar 

  17. Eidenschink, R., Konrath, G., Kretzschmann, H., Rombach, M.: Unusual lift by shearing mesogenic fluids. Mol. Cryst. Liq. Cryst. Sci. Technol. 330(1), 327–334 (1999). https://doi.org/10.1080/10587259908025606

    Article  Google Scholar 

  18. Amann, T., Kailer, A.: Ultralow friction of mesogenic fluid mixtures in tribological reciprocating systems. Tribol. Lett. 37(2), 343–352 (2009). https://doi.org/10.1007/s11249-009-9527-2

    Article  Google Scholar 

  19. Amann, T., Kailer, A.: Relationship between ultralow friction of mesogenic-like fluids and their lateral chain length. Tribol. Lett. 41(1), 121–129 (2010). https://doi.org/10.1007/s11249-010-9692-3

    Article  Google Scholar 

  20. Amann, T., Kailer, A.: Analysis of the ultralow friction behavior of a mesogenic fluid in a reciprocating contact. Wear. 271(9–10), 1701–1706 (2011). https://doi.org/10.1016/j.wear.2010.12.012

    Article  Google Scholar 

  21. Li, K., Amann, T., Walter, M., Moseler, M., Kailer, A., Rühe, J.: Ultralow friction induced by tribochemical reactions: a novel mechanism of lubrication on steel surfaces. Langmuir. 29(17), 5207–5213 (2013). https://doi.org/10.1021/la400333d

    Article  Google Scholar 

  22. Li, K., Amann, T., List, M., Walter, M., Moseler, M., Kailer, A., Rühe, J.: Ultralow friction of steel surfaces using a 1,3-diketone lubricant in the thin film lubrication regime. Langmuir. 31(40), 11033–11039 (2015). https://doi.org/10.1021/acs.langmuir.5b02315

    Article  Google Scholar 

  23. Amann, T., Kailer, A., Beyer-Faiß, S., Stehr, W., Metzger, B.: Development of sintered bearings with minimal friction losses and maximum life time using infiltrated liquid crystalline lubricants. Tribol. Int. 98, 282–291 (2016). https://doi.org/10.1016/j.triboint.2016.02.023

    Article  Google Scholar 

  24. Amann, T., Kailer, A., Oberle, N., Li, K., Walter, M., List, M., Rühe, J.: Macroscopic superlow friction of steel and diamond-like carbon lubricated with a formanisotropic 1,3-diketone. ACS Omega. 2(11), 8330–8342 (2017). https://doi.org/10.1021/acsomega.7b01561

    Article  Google Scholar 

  25. Liu, D., Li, K., Zhang, S., Amann, T., Zhang, C., Yan, X.: Anti-spreading behavior of 1,3-diketone lubricating oil on steel surfaces. Tribol. Int. 121, 108–113 (2018). https://doi.org/10.1016/j.triboint.2018.01.031

    Article  Google Scholar 

  26. Blau, P.J.: On the nature of running-in. Tribol. Int. 38(11–12), 1007–1012 (2005). https://doi.org/10.1016/j.triboint.2005.07.020

    Article  Google Scholar 

  27. Li, J., Zhang, C., Deng, M., Luo, J.: Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution. RSC Adv. 5(39), 30861–30868 (2015). https://doi.org/10.1039/c5ra00323g

    Article  Google Scholar 

  28. Charles, R.G., Barnartt, S.: Reaction of acetylacetone with metallic iron in the presence of oxygen. J. of Phys. Chem. 62(3), 315–318 (1958)

    Article  Google Scholar 

  29. Sato, K., Kammori, O.: Studies of the direct dissolution of metal in a β-diketone reagent. Bull. Chem. Soc. Jpn. 42(10), 2778–2790 (1969)

    Article  Google Scholar 

  30. Kalatain, E., Vilenkin, A.: Additives used in lubricating oils for foreign aviation gas turbine engines (review of patents). Chem. Technol. Fuels Oils 10(2), 162–166 (1974)

    Article  Google Scholar 

  31. Nakano, K.: Scaling law on molecular orientation and effective viscosity of liquid-crystalline boundary films. Tribol. Lett. 14(1), 17–24 (2003)

    Article  Google Scholar 

  32. Itoh, S., Imura, Y., Fukuzawa, K., Zhang, H.: Anisotropic shear viscosity of photoaligned liquid crystal confined in submicrometer-to-nanometer-scale gap widths revealed with simultaneously measured molecular orientation. Langmuir. 31(41), 11360–11369 (2015). https://doi.org/10.1021/acs.langmuir.5b02713

    Article  Google Scholar 

  33. Gao, M., Ma, L., Luo, J.: Effect of alkyl chain length on the orientational behavior of liquid crystals nano-film. Tribol. Lett. (2016). https://doi.org/10.1007/s11249-016-0663-1

    Google Scholar 

  34. Gao, Y., Ma, L., Luo, J.: Friction anisotropy induced by oriented liquid crystal molecules. Tribol. Lett. (2016). https://doi.org/10.1007/s11249-016-0645-3

    Google Scholar 

  35. Mansare, T., Decressain, R., Gors, C., Dolganov, V.K.: Phase transformations and dynamics of 4-cyano-4′-pentylbiphenyl (5CB) by nuclear magnetic resonance, analysis differential scanning calorimetry, and wideangle X-ray diffraction analysis. Mol. Cryst. 382(1), 97–111 (2002)

    Article  Google Scholar 

  36. Tsai, T.R., Chen, C.Y., Pan, C.L., Pan, R.P., Zhang, X.C.: Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB. Appl. Opt. 42(13), 2372–2376 (2003)

    Article  Google Scholar 

  37. Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35(1), 17–23 (2009). https://doi.org/10.1007/s11249-009-9438-2

    Article  Google Scholar 

  38. Li, J., Zhang, C., Sun, L., Luo, J.: Analysis of measurement inaccuracy in superlubricity tests. Tribol. Trans. 56(1), 141–147 (2013). https://doi.org/10.1080/10402004.2012.732200

    Article  Google Scholar 

  39. Srivastava, S., Badrinarayanan, S., Mukhedkar, A.J.: X-ray photoelectron spectra of metal complexes of substituted 2,4-pentanediones. Polyhedron. 4(3), 409–414 (1985)

    Article  Google Scholar 

  40. Berman, D., Erdemir, A., Sumant, A.V.: Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon. 54, 454–459 (2013). https://doi.org/10.1016/j.carbon.2012.11.061

    Article  Google Scholar 

  41. Gao, Y., Ma, L., Luo, J.: Pitted surfaces produced by lactic acid lubrication and their effect on ultra-low friction. Tribol. Lett. (2015). https://doi.org/10.1007/s11249-015-0463-z

    Google Scholar 

  42. Jerome, B.: Surface effects and anchoring in liquid crystals. Rep. Prog. Phys. 54(3), 391 (1991)

    Article  Google Scholar 

  43. Sengupta, A., Herminghaus, S., Bahr, C.: Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liq. Cryst. Rev. 2(2), 73–110 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51575285), Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2016EEP15, ZR2017LEE014), and Shandong Provincial Science and Technology Development Project, China (Grant Nos. 2017GGX30118, 2017GGX30136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonghai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xu, C., Xiao, G. et al. Ultralow Friction Between Steel Surfaces Achieved by Lubricating with Liquid Crystal After a Running-in Process with Acetylacetone. Tribol Lett 66, 68 (2018). https://doi.org/10.1007/s11249-018-1020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1020-3

Keywords

Navigation