Tribology Letters

, 66:62 | Cite as

FEM Modeling on Scratch Behavior of Multiphase Polymeric Systems

  • Vijay Kisan Chandelia
  • Hung-Jue Sue
  • Mohammad Motaher Hossain
Original Paper


In-depth understanding of how the presence of dispersed particles influences the scratch behavior of multiphase polymeric systems requires extensive knowledge of the corresponding local deformation and damage mechanisms during scratching. Effects of particle type, size, and concentration on scratch behavior of multiphase polymeric systems have been investigated based on a three-dimensional finite element method (FEM) modeling effort. Effect of particles location underneath the surface during scratch has also been studied. The results show that the presence of hard and soft particles can drastically affect the stress and strain field development during the scratching process. The FEM stress and strain field analysis explains the experimentally observed scratch-induced damages in multiphase polymeric systems reported in the literature.


Polymer composites Scratch resistance Surface deformation Damage mechanisms FEM 



The authors would like to thank the Polymer Technology Center at Texas A&M University (TAMU) for providing access to the High Performance Research Computing (HPRC) facility at TAMU.


  1. 1.
    ASTM D7027-13: Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine. ASTM International, Pennsylvania (2013)Google Scholar
  2. 2.
    Jiang, H., Browning, R.L., Sue, H.-J.: Understanding of scratch-induced damage mechanisms in polymers. Polymer 50(16), 4056–4065 (2009)CrossRefGoogle Scholar
  3. 3.
    Browning, R.L., Lim, G.T., Moyse, A., Sun, L., Sue, H.-J.: Effects of slip agent and talc surface-treatment on the scratch behavior of thermoplastic olefins. Polym. Eng. Sci. 46(5), 601–608 (2006)CrossRefGoogle Scholar
  4. 4.
    Browning, R.L., Sue, H.-J., Minkwitz, R., Charoensirisomboon, P.: Effects of acrylonitrile content and molecular weight on the scratch behavior of styrene-acrylonitrile random copolymers. Polym. Eng. Sci. 51(11), 2282–2294 (2011)CrossRefGoogle Scholar
  5. 5.
    Jiang, H., Browning, R.L., Hossain, M.M., Sue, H.-J., Fujiwara, M.: Quantitative evaluation of scratch visibility resistance of polymers. Appl. Surf. Sci. 256(21), 6324–6329 (2010)CrossRefGoogle Scholar
  6. 6.
    Wong, M., Moyse, A., Lee, F., Sue, H.-J.: Study of surface damage of polypropylene under progressive loading. J. Mater. Sci. 39(10), 3293–3308 (2004)CrossRefGoogle Scholar
  7. 7.
    Briscoe, B.J., Evans, P.D., Pellilo, E., Sinha, S.K.: Scratching maps for polymers. Wear 200(1–2), 137–147 (1996)CrossRefGoogle Scholar
  8. 8.
    Hossain, M.M., Browning, R.L., Minkwitz, R., Sue, H.-J.: Effect of asymmetric constitutive behavior on scratch-induced deformation of polymers. Tribol. Lett. 47(1), 113–122 (2012)CrossRefGoogle Scholar
  9. 9.
    Hossain, M.M., Jiang, H., Sue, H.-J.: Effect of constitutive behavior on scratch visibility resistance of polymers—a finite element method parametric study. Wear 270(11–12), 751–759 (2011)CrossRefGoogle Scholar
  10. 10.
    Hossain, M.M., Jiang, H., Sue, H.-J.: Correlation between constitutive behavior and scratch visibility resistance of polymers—a finite element method parametric study. In: SPE TPO Global Conference, Detroit, Michigan (2011)Google Scholar
  11. 11.
    Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 197(1), 53–59 (1983)CrossRefGoogle Scholar
  12. 12.
    Hamilton, G.M., Goodman, L.E.: The stress field created by a circular sliding contact. J. Appl. Mech. 33(2), 371–376 (1966)CrossRefGoogle Scholar
  13. 13.
    Hossain, M.M., Minkwitz, R., Sue, H.-J.: Minimization of surface friction effect on scratch-induced deformation in polymers. Polym. Eng. Sci. 53(7), 1405–1413 (2013)CrossRefGoogle Scholar
  14. 14.
    Jiang, H., Lim, G.T., Reddy, J.N., Whitcomb, J.D., Sue, H.-J.: Finite element method parametric study on scratch behavior of polymers. J. Polym. Sci., Part B: Polym. Phys. 45(12), 1435–1447 (2007)CrossRefGoogle Scholar
  15. 15.
    Pelletier, H., Durier, A.-L., Gauthier, C., Schirrer, R.: Viscoelastic and elastic–plastic behaviors of amorphous polymeric surfaces during scratch. Tribol. Int. 41(11), 975–984 (2008)CrossRefGoogle Scholar
  16. 16.
    Schirrer, R., Gauthier, C., Pelletier, H.: Experimental and finite-element analysis of scratches on amorphous polymeric surfaces. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 222(3), 221–230 (2008)CrossRefGoogle Scholar
  17. 17.
    Hossain, M.M., Minkwitz, R., Charoensirisomboon, P., Sue, H.-J.: Quantitative modeling of scratch-induced deformation in amorphous polymers. Polymer 55, 6152–6166 (2014)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Gu, P., Zhang, H., Zhang, Z., Wu, X.: Finite element modeling of the indentation and scratch response of epoxy/silica nanocomposites. Mech. Adv. Mater. Struct. 21, 802–809 (2014)CrossRefGoogle Scholar
  19. 19.
    Moghbelli, E., Sun, L., Jiang, H., Boo, W.-J., Sue, H.-J.: Scratch behavior of epoxy nanocomposites containing α-zirconium phosphate and core-shell rubber particles. Polym. Eng. Sci. 49, 483–490 (2009)CrossRefGoogle Scholar
  20. 20.
    Kurkcu, P., Andena, L., Pavan, A.: An experimental investigation of the scratch behaviour of polymers—2: influence of hard or soft fillers. Wear 317, 277–290 (2014)CrossRefGoogle Scholar
  21. 21.
    Hossain, M.M., Moghbelli, E., Jahnke, E., Boeckmann, P., Guriyanova, S., Sander, R., Minkwitz, R., Sue, H.-J.: Rubber particle size and type effects on scratch behavior of styrenic-based copolymers. Polymer 63, 71–81 (2015)CrossRefGoogle Scholar
  22. 22.
    Hossain, M.M., Jahnke, E., Boeckmann, P., Guriyanova, S., Minkwitz, R., Sue, H.-J.: Effect of thermal history on scratch behavior of multi-phase styrenic-based copolymers. Tribol. Int. 99, 248–257 (2016)CrossRefGoogle Scholar
  23. 23.
    Ng, C.B., Schadler, L.S., Siegel, R.W.: Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostruct. Mater. 12, 507–510 (1999)CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Lim, S.: Tribological behavior of nanostructured WC particles/polymer coatings. Wear 262, 1097–1101 (2007)CrossRefGoogle Scholar
  25. 25.
    ABAQUS. ABAQUS® Analysis User’s Manual, Version 6.14.
  26. 26.
    Marlow, R.S.: A general first-invariant hyperelastic constitutive model. In: Constitutive Models for Rubber, pp. 157–160 (2003)Google Scholar
  27. 27.
    Liang, Y.-L., Sue, H.-J., Minkwitz, R.: Rubber content effect on scratch behavior in acrylonitrile-styrene-acrylate copolymers. J. Appl. Polym. Sci. 126, 1088–1096 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vijay Kisan Chandelia
    • 1
  • Hung-Jue Sue
    • 2
  • Mohammad Motaher Hossain
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringTexas A&M University-KingsvilleKingsvilleUSA
  2. 2.Polymer Technology Center, Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations