Tribology Letters

, 66:61 | Cite as

Self-Lubricating PTFE-Based Composites with Black Phosphorus Nanosheets

  • Yan Lv
  • Wei Wang
  • Guoxin Xie
  • Jianbin Luo
Original Paper


Black phosphorus (BP), a newly emerging two-dimensional material, has recently received considerable attention. Our recent work suggested that BP nanosheets exhibit extraordinary mechanical and lubrication properties. In the present work, the tribological properties of polyetheretherketone (PEEK)/polytetrafluoroethylene (PTFE) and carbon fiber (CF)/PTFE composites with BP nanosheets have been investigated. The morphologies and surface element distribution of the worn tracks of the tribopair surfaces were examined by different analytical techniques. The results show that the coefficients of friction (COFs) of both the PEEK/PTFE and CF/PTFE composites decreased dramatically after the addition of BP nanosheets, and the minimum COF of the composite was 0.04, which was a quarter of that of the PTFE composite without BP nanosheets. After BP nanosheets were added into the composites, the wear rate of the PTFE/PEEK composite decreased dramatically, while that of the CF/PTFE composite increased significantly with the increase in the filler concentration. The analysis of the lubrication mechanism of the PTFE composite with BP nanosheets suggested that BP nanosheets could be constantly supplied into the contact area and gradually formed a BP film composed of phosphorus oxide and phosphoric acid on the counterpart surface instead of the formation of PTFE transfer film. The formed BP transfer film promoted the friction reduction and the disappearance of the adhesive wear.


PTFE composite Black phosphorus PEEK Carbon fiber Friction and wear 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51527901, 51475256, 51605249), and Beijing Natural Science Foundation of China (Grant No. 3182010).


  1. 1.
    Lewis, M.W.J.: Friction and wear of PTFE-based reciprocating seals. Lubr. Eng. 42, 152–158 (1986)Google Scholar
  2. 2.
    Blanchet, T.A., Kennedy, F.E.: Effects of oscillatory speed and mutual overlap on the tribological behavior of PTFE and selected PTFE-based self-lubricating composites. Tribol. Trans. 34, 327–334 (1991)CrossRefGoogle Scholar
  3. 3.
    Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003)CrossRefGoogle Scholar
  4. 4.
    Unal, H., Mimaroglu, A., Kadıoglu, U., Ekiz, H.: Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions. Mater. Des. 25, 239–245 (2004)CrossRefGoogle Scholar
  5. 5.
    Duvillaret, L., Garet, F., Roux, J.F., Coutaz, J.L.: Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001)CrossRefGoogle Scholar
  6. 6.
    Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2010)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Yan, F.: Tribological properties of transfer films of PTFE-based composites. Wear 261, 1359–1366 (2006)CrossRefGoogle Scholar
  8. 8.
    Shi, Y., Feng, X., Wang, H., Lu, X.: Tribological properties of PTFE composites filled with surface-treated carbon fiber. J. Mater. Sci. 42, 8465–8469 (2007)CrossRefGoogle Scholar
  9. 9.
    Bijwe, J., Neje, S., Indumathi, J., Fahim, M.: Friction and wear performance evaluation of carbon fibre reinforced PTFE composite. J. Reinf. Plast. Compos. 21, 1221–1240 (2002)CrossRefGoogle Scholar
  10. 10.
    Wang, Q., Song, F., Zhang, X., Zhao, G., Wang, T.: Impact of fillers and counterface topography on wear behavior of PTFE polymers for ultrasonic motor. J. Appl. Polym. Sci. 134, 44835(44831)–44835(44810) (2017)Google Scholar
  11. 11.
    Li, J.: The effect of carbon fiber content on the mechanical and tribological properties of carbon fiber-reinforced PTFE composites. Polym-Plast Technol Eng 49, 332–336 (2010)CrossRefGoogle Scholar
  12. 12.
    Shi, Y.J., Feng, X., Diao, X.S., Wang, H.Y., Lu, X.H.: Tribological and mechanical properties of carbon nanofiber-filled PTFE composites. Key Eng. Mater. 121–123, 975–978 (2007)Google Scholar
  13. 13.
    Song, F., Wang, Q., Wang, T.: Effects of glass fiber and molybdenum disulfide on tribological behaviors and PV limit of chopped carbon fiber reinforced polytetrafluoroethylene composites. Tribol. Int. 104, 392–401 (2016)CrossRefGoogle Scholar
  14. 14.
    Cheng, X.-H., Xue, Y.-J., Xie, C.-Y.: Friction and wear of rare-earth modified glass-fiber filled PTFE composites in dry reciprocating sliding motion with impact loads. Wear 253, 869–877 (2002)CrossRefGoogle Scholar
  15. 15.
    Teng, X., Wen, L., Lv, Y., Tang, W., Zhao, X., Chen, C.: Effects of potassium titanate whisker and glass fiber on tribological and mechanical properties of PTFE/PEEK blend. High Perform. Polym. (2017)Google Scholar
  16. 16.
    Burris, D.L., Sawyer, W.G.: A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261, 410–418 (2006)CrossRefGoogle Scholar
  17. 17.
    Qu, S., Penaranda, J., Wang, S.-S.: Tribological behavior of PTFE/PEEK composite. In: Technical Conference (2016)Google Scholar
  18. 18.
    Guo, W.L., Yin, J., Qiu, H., Guo, Y.F., Wu, H.R., Xue, M.M.: Friction of low-dimensional nanomaterial systems. Friction 2, 209–225 (2014)CrossRefGoogle Scholar
  19. 19.
    Marchetto, D., Feser, T., Dienwiebel, M.: Microscale study of frictional properties of graphene in ultra high vacuum. Friction 3, 161–169 (2015)CrossRefGoogle Scholar
  20. 20.
    Padenko, E., van Rooyen, L.J., Karger-Kocsis, J.: Transfer film formation in PTFE/Oxyfluorinated graphene nanocomposites during dry sliding. Tribol. Lett. 65, 36 (2017)CrossRefGoogle Scholar
  21. 21.
    Padenko, E., Rooyen, L.V., Wetzel, B., Karger-Kocsis, J.: “Ultralow” sliding wear polytetrafluoro ethylene nanocomposites with functionalized graphene. J. Reinf. Plast. Compos. 35, 892–901 (2016)CrossRefGoogle Scholar
  22. 22.
    Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.-Z., Blanchet, T.A., et al.: Suppression of wear in graphene polymer composites. Carbon 50, 3178–3183 (2012)CrossRefGoogle Scholar
  23. 23.
    Goyal, R.K., Yadav, M.: Study on wear and friction behavior of graphite flake-filled PTFE composites. J. Appl. Polym. Sci. 127, 3186–3191 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhang, H.-J., Zhang, Z.-Z., Guo, F.: Studies of the influence of graphite and MoS2 on the tribological behaviors of hybrid PTFE/Nomex fabric composite. Tribol. Trans. 54, 417–423 (2011)CrossRefGoogle Scholar
  25. 25.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. U.S.A. 112, 4523–4530 (2015)CrossRefGoogle Scholar
  26. 26.
    Brown, A., Rundqvist, S.: Refinement of the crystal structure of black phosphorus. Acta Crystallogr. A 19, 684–685 (1965)CrossRefGoogle Scholar
  27. 27.
    Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)CrossRefGoogle Scholar
  28. 28.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRefGoogle Scholar
  29. 29.
    Jiang, J.W., Park, H.S.: Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 385304 (2014)CrossRefGoogle Scholar
  30. 30.
    Jiang, J.W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat.Commun. 5, 4727 (2014)CrossRefGoogle Scholar
  31. 31.
    Li, L., Yang, J.: Mechanical properties of prestrained single-layer black phosphorus: effect of thermal environment. Nanotechnology 28, 475701 (2017)CrossRefGoogle Scholar
  32. 32.
    Chen, H., Huang, P., Guo, D., Xie, G.: Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 120, 29491–29497 (2016)CrossRefGoogle Scholar
  33. 33.
    Cui, Z., Xie, G., He, F., Wang, W., Guo, D., Wang, W.: Atomic-scale friction of black phosphorus: effect of thickness and anisotropic behavior. Adv. Mater. Interfaces 4, 1700998 (2017)CrossRefGoogle Scholar
  34. 34.
    Bai, L., Liu, B., Srikanth, N., Tian, Y., Zhou, K.: Nano-friction behavior of phosphorene. Nanotechnology 28, 355704 (2017)CrossRefGoogle Scholar
  35. 35.
    Wang, W., Xie, G., Luo, J.: Black phosphorus as a new lubricant. Friction 6, 116–142 (2018)CrossRefGoogle Scholar
  36. 36.
    Park, C.M., Sohn, H.J.: Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007)CrossRefGoogle Scholar
  37. 37.
    Ravi Kumar, B.N., Suresha, B., Venkataramareddy, M.: Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide 66/polypropylene nanocomposites. Mater. Des. 30, 3852–3858 (2009)CrossRefGoogle Scholar
  38. 38.
    Edmonds, M.T., Tadich, A., Carvalho, A., Ziletti, A., O’Donnell, K.M., Koenig, S.P., et al.: Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces. 7, 14557–14562 (2015)CrossRefGoogle Scholar
  39. 39.
    Island, J.O., Steele, G.A., van der Zant, H.S., Castellanos-Gomez, A.: Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015)CrossRefGoogle Scholar
  40. 40.
    Kwon, H., Seo, S.W., Kim, T.G., Lee, E.S., Lanh, P.T., Yang, S., et al.: Ultrathin and flat layer black phosphorus fabricated by reactive oxygen and water rinse. ACS Nano 10, 8723–8731 (2016)CrossRefGoogle Scholar
  41. 41.
    Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., et al.: Control of surface and edge oxidation on phosphorene. ACS Appl. Mater. Interfaces. 9, 9126–9135 (2017)CrossRefGoogle Scholar
  42. 42.
    Yang, T., Dong, B., Wang, J., Zhang, Z., Guan, J., Kuntz, K., et al.: Interpreting core-level spectra of oxidizing phosphorene: theory and experiment. Phys. Rev. B 92, 125412 (2015)CrossRefGoogle Scholar
  43. 43.
    Cheng, X., Xue, Y., Xie, C.: Tribological investigation of PTFE composite filled with lead and rare earths-modified glass fiber. Mater. Lett. 57, 2553–2557 (2003)CrossRefGoogle Scholar
  44. 44.
    Bai, B.C., Bae, T.-S.: Pore structure control of activated carbon fiber for CO gas sensor electrode. Carbon Lett. 18, 76–79 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Tribology, Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations