Advertisement

Tribology Letters

, 66:54 | Cite as

Tip-Enhanced Raman Spectroscopy Studies on Amorphous Carbon Films and Carbon Overcoats in Commercial Hard Disk Drives

  • Andreas Rosenkranz
  • Lindsay Freeman
  • Benjamin Suen
  • Yeshaiahu Fainman
  • Frank E. Talke
Original Paper
  • 262 Downloads

Abstract

Far-field Raman spectroscopy and tip-enhanced Raman spectroscopy were used to investigate 20-nm-thick amorphous carbon films and 3-nm-thick carbon overcoats of commercial hard disk drives. Enhancement of the Raman signal on both samples was observed indicating the activation of surface plasmons. The largest enhancement was found for the 3-nm-thick carbon overcoat of a commercial hard disk suggesting that the chemistry of nanometer-thick carbon films can be studied using tip-enhanced Raman spectroscopy with high sensitivity and resolution.

Keywords

Hard disk drives Carbon overcoats Diamond-like carbon Tip-enhanced Raman spectroscopy 

Notes

Acknowledgements

Andreas Rosenkranz acknowledges the Feodor Lynen Fellowship of the Alexander von Humboldt foundation. This work was supported by the National Science Foundation (NSF) (Grants CBET-1704085, DMR-1707641, ECCS-1405234 and ECCS-1507146) and the Cymer Corporation. This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the NSF (Grant ECCS-1542148).

References

  1. 1.
    Schmid, T., Opilik, L., Blum, C., Zenobi, R.: Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52, 5940–5954 (2013)CrossRefGoogle Scholar
  2. 2.
    Blum, C., Opilik, L., Atkin, J.M., Braun, K., Kämmer, S.B., Kravstov, V., Kumar, N., Lemeshko, S., Li, J.F., Luszcz, K., Maleki, T., Meixner, A.J., Minne, S., Raschke, M.B., Ren, B., Rogalski, J., Roy, D., Stephanidis, B., Wang, X., Zhang, D., Zhong, J.H., Zenobi, R.: Tip-enhanced Raman spectroscopy—an interlaboratory reproducibility and comparison study. J. Raman Spectrosc. 45, 22–31 (2014)CrossRefGoogle Scholar
  3. 3.
    Stadler, J., Schmid, T., Zenobi, R.: Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4, 1856–1870 (2012)CrossRefGoogle Scholar
  4. 4.
    Pettinger, B., Schambach, P., Villagomez, C.J., Scott, N.: Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012)CrossRefGoogle Scholar
  5. 5.
    Berweger, S., Atkin, J.M., Olmon, R.L., Raschke, M.B.: Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1, 3427–3432 (2010)CrossRefGoogle Scholar
  6. 6.
    Berweger, S., Atkin, J.M., Olmon, R.L., Raschke, M.B.: Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J. Phys. Chem. Lett. 3, 945–952 (2012)CrossRefGoogle Scholar
  7. 7.
    Hayazawa, N., Yano, T., Watanabe, H., Inouye, Y., Kawata, S.: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chem. Phys. Lett. 376, 174–180 (2003)CrossRefGoogle Scholar
  8. 8.
    Chen, C., Hayazawa, N., Kawata, S.: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 4, 1–5 (2014)Google Scholar
  9. 9.
    Liao, M., Jiang, S., Hu, C., Zhang, R., Kuang, Y., Zhu, J., Zhang, Y., Dong, Z.: Tip-enhanced Raman spectroscopic imaging of individual Carbon nanotubes with subnanometer resolution. Nano Lett. 16, 4040–4046 (2016)CrossRefGoogle Scholar
  10. 10.
    Saito, Y., Hayazawa, N., Kataura, H., Murakami, T., Tsukagoshi, K., Inouye, Y., Kawata, S.: Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chem. Phys. Lett. 410, 136–141 (2005)CrossRefGoogle Scholar
  11. 11.
    Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., Silva, S.R.P.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80, 440–447 (1996)CrossRefGoogle Scholar
  12. 12.
    Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and Nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477–2512 (2004)CrossRefGoogle Scholar
  13. 13.
    Chu, P.K., Li, L.: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)CrossRefGoogle Scholar
  14. 14.
    Veres, M., Fuele, M., Toth, S., Koos, M., Pocsik, I.: Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 13, 1412–1415 (2004)CrossRefGoogle Scholar
  15. 15.
    Kudelski, A., Pettinger, B.: SERS on carbon chain segments: monitoring locally surface chemistry. Chem. Phys. Lett. 321, 356–362 (2000)CrossRefGoogle Scholar
  16. 16.
    Katsuyoshi, I., Sato, J., Uosaki, K.: Surface-enhanced scattering at well-defined single crystalline faces of platinum-group metals induced by gap-mode plasmon excitation. J. Photochem. Photobiol. A 221, 175–180 (2011)CrossRefGoogle Scholar
  17. 17.
    Rottmayer, R.E., Barta, S., Buechel, D., Challener, W.A., Hohlfeld, J., Kubota, Y., Li, L., Lu, B., Mihalcea, C., Mountfield, K., Pelhos, K.: Heat-assisted magnetic recording. IEEE Trans. Magn. 42, 2417–2421 (2006)CrossRefGoogle Scholar
  18. 18.
    Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.T., Erden, M.F.: Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008)CrossRefGoogle Scholar
  19. 19.
    Marchon, B., Guo, X.C., Pathem, B.K., Rose, F., Dai, Q., Feliss, N., Schreck, E., Reiner, J., Mosendz, O., Takano, K., Do, H., Bruns, J., Saito, Y.: Head-disk interface materials issues in heat-assisted magnetic recording. IEEE Trans. Magn. 50, 3300607 (2014)CrossRefGoogle Scholar
  20. 20.
    Pathem, B.K., Guo, X.C., Rose, F., Wang, N., Komvopoulos, K., Schreck, E., Marchon, B.: Carbon overcoat oxidation in heat-assisted magnetic recording. IEEE Trans. Magn. 49, 3721–3724 (2013)CrossRefGoogle Scholar
  21. 21.
    Xu, S., Sinha, S., Rismaniyazdi, E., Wolf, C., Dorsey, P., Knigge, B.: Effect of carbon overcoat on heat-assisted magnetic recording performance. IEEE Trans. Magn. 51, 3301805 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andreas Rosenkranz
    • 1
  • Lindsay Freeman
    • 2
  • Benjamin Suen
    • 1
  • Yeshaiahu Fainman
    • 2
  • Frank E. Talke
    • 1
  1. 1.Center for Memory and Recording ResearchUC San DiegoLa JollaUSA
  2. 2.Electrical and Computer Engineering DepartmentUC San DiegoLa JollaUSA

Personalised recommendations