Tribology Letters

, 66:55 | Cite as

Characterization of the Tribological Behavior of the Textured Steel Surfaces Fabricated by Photolithographic Etching

  • Yufu Xu
  • Jingyuan Yu
  • Jian Geng
  • Rasha Abuflaha
  • Dustin Olson
  • Xianguo Hu
  • Wilfred T. Tysoe
Original Article


A photolithography etching technique was used to fabricate textured surfaces on steel samples. The friction and wear behavior of the textured surfaces were studied with surface contact sliding. The influence of the diameter and the density of the dimples were investigated. The results show that the textured surfaces with appropriate diameters and densities had excellent friction reducing and antiwear properties. Large-diameter dimples can destroy the integrity of the lubricating film, and low- or high-density dimples produce more iron sulfates and fewer ferrous sulfides on the rubbing surfaces due to the tribo-reactions, which resulted in higher friction coefficients. The tribo-chemical films, oil micro-reservoir and wear debris-containing roles of the dimples together help the textured surfaces to provide improved antiwear properties.


Textured steel surfaces Laser surface texturing Photolithographic etching Friction and wear behavior 



The authors appreciate Dr. Heather Adams and Mr. Xavier Udad for their assistance in the surface texturing process, and the authors would like to thank Prof. Kunhong Hu and Dr. Enzhu Hu for their help in the tribo-tests. This work was supported by the National Natural Science Foundation of China (Grant No. 51405124).


  1. 1.
    Wagner, J.J., Jenson, A.D., Sundararajan, S.: The effect of contact pressure and surface texture on running-in behavior of case carburized steel under boundary lubrication. Wear 376, 851–857 (2017)CrossRefGoogle Scholar
  2. 2.
    Etsion, I.: Modeling of surface texturing in hydrodynamic lubrication. Friction 1, 195–209 (2013)CrossRefGoogle Scholar
  3. 3.
    Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46, 397–403 (2003)CrossRefGoogle Scholar
  4. 4.
    Kovalchenko, A., Erdemir, A., Ajayi, O., Etsion, I.: Tribological behavior of oil-lubricated laser textured steel surfaces in conformal flat and non-conformal contacts. Mater. Perform. Charact. 6, 1–23 (2017)Google Scholar
  5. 5.
    Taee, M., Torabi, A., Akbarzadeh, S., Khonsari, M., Badrossamay, M.: On the performance of EHL contacts with textured surfaces. Tribol. Lett. 65, 85 (2017)CrossRefGoogle Scholar
  6. 6.
    Sedlaček, M., Podgornik, B., Ramalho, A., Česnik, D.: Influence of geometry and the sequence of surface texturing process on tribological properties. Tribol. Int. 115, 268–273 (2017)CrossRefGoogle Scholar
  7. 7.
    Su, B., Huang, L., Huang, W., Wang, X.: The load carrying capacity of textured sliding bearings with elastic deformation. Tribol. Int. 109, 86–96 (2017)CrossRefGoogle Scholar
  8. 8.
    Chae, Y.H.: Effect of size for micro-scale dimples on surface under lubricated sliding contact. Key Eng. Mater. 345–346, 765–768 (2007)CrossRefGoogle Scholar
  9. 9.
    Etsion, I., Halperin, G., Brizmer, V., Kligerman, Y.: Experimental investigation of laser surface textured parallel thrust bearings. Tribol. Lett. 17, 295–300 (2004)CrossRefGoogle Scholar
  10. 10.
    Yu, H., Wang, X., Zhou, F.: Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol. Lett. 37, 123–130 (2010)CrossRefGoogle Scholar
  11. 11.
    Etsion, I.: State of the art in laser surface texturing. In: Luo, J., Meng, Y., Shao, T., Zhao, Q. (eds.) Advanced Tribology, pp. 761–762. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Etsion, I., Sher, E.: Improving fuel efficiency with laser surface textured piston rings. Tribol. Int. 42, 542–547 (2009)CrossRefGoogle Scholar
  13. 13.
    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003)CrossRefGoogle Scholar
  14. 14.
    Ye, J., Zhang, H., Liu, X., Liu, K.: Low wear steel counterface texture design: a case study using micro-pits texture and alumina–PTFE nanocomposite. Tribol. Lett. 65, 165 (2017)CrossRefGoogle Scholar
  15. 15.
    Daniel, C., Manderla, J., Hallmann, S., Emmelmann, C.: Influence of an angular hatching exposure strategy on the surface roughness during picosecond laser ablation of hard materials. Phys. Procedia 83, 135–146 (2016)CrossRefGoogle Scholar
  16. 16.
    Hu, J., Xu, H.: Friction and wear behavior analysis of the stainless steel surface fabricated by laser texturing underwater. Tribol. Int. 102, 371–377 (2016)CrossRefGoogle Scholar
  17. 17.
    Saeidi, F., Parlinska-Wojtan, M., Hoffmann, P., Wasmer, K.: Effects of laser surface texturing on the wear and failure mechanism of grey cast iron reciprocating against steel under starved lubrication conditions. Wear 386–387, 29–38 (2017)CrossRefGoogle Scholar
  18. 18.
    Touche, T., Cayer-Barrioz, J., Mazuyer, D.: Friction of textured surfaces in ehl and mixed lubrication: effect of the groove topography. Tribol. Lett. 63, 25 (2016)CrossRefGoogle Scholar
  19. 19.
    Xu, S., Shimada, K., Mizutani, M., Kuriyagawa, T.: Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool. Int. J. Mach. Tools Manuf. 86, 12–17 (2014)CrossRefGoogle Scholar
  20. 20.
    Kawasegi, N., Ozaki, K., Morita, N., Nishimura, K., Yamaguchi, M.: Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment. Precis. Eng. 47, 311–320 (2017)CrossRefGoogle Scholar
  21. 21.
    Holmes, P., Snell, J.: A vapour etching technique for the photolithography of silicon dioxide. Microelectron. Reliab. 5, 337–341 (1966)CrossRefGoogle Scholar
  22. 22.
    Atar, G., Ternyak, O., Greental, D., Eger, D., Chechelnitsky, G., Mazurski, N., et al.: Fabrication and characterization of large-core Yb/Al-codoped fused silica waveguides using dry etching. Opt. Mater. 38, 265–271 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Meng, Y.: A study of surface texturing of carbon steel by photochemical machining. J. Mater. Process. Technol. 212, 2133–2140 (2012)CrossRefGoogle Scholar
  24. 24.
    Costa, H., Hutchings, I.: Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 40, 1227–1238 (2007)CrossRefGoogle Scholar
  25. 25.
    Gachot, C., Rosenkranz, A., Hsu, S.M., Costa, H.L.: A critical assessment of surface texturing for friction and wear improvement. Wear 372, 21–41 (2017)CrossRefGoogle Scholar
  26. 26.
    Braun, D., Greiner, C., Schneider, J., Gumbsch, P.: Efficiency of laser surface texturing in the reduction of friction under mixed lubrication. Tribol. Int. 77, 142–147 (2014)CrossRefGoogle Scholar
  27. 27.
    Li, K., Yao, Z., Hu, Y., Gu, W.: Friction and wear performance of laser peen textured surface under starved lubrication. Tribol. Int. 77, 97–105 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhang, H., Ding, B., Chen, T.: A high efficiency industrial polysilicon solar cell with a honeycomb-like surface fabricated by wet etching using a photoresist mask. Appl. Surf. Sci. 387, 1265–1273 (2016)CrossRefGoogle Scholar
  29. 29.
    Pettersson, U., Jacobson, S.: Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 17, 553–559 (2004)CrossRefGoogle Scholar
  30. 30.
    Xiong, D., Qin, Y., Li, J., Wan, Y., Tyagi, R.: Tribological properties of PTFE/laser surface textured stainless steel under starved oil lubrication. Tribol. Int. 82, 305–310 (2015)CrossRefGoogle Scholar
  31. 31.
    Xie, M., Tang, H., Yao, H.: Failure analysis of tire separation in two-sized tires on Airbus planes. Eng. Fail. Anal. 61, 21–27 (2016)CrossRefGoogle Scholar
  32. 32.
    Zheng, X., Xu, Y., Geng, J., Peng, Y., Olson, D., Hu, X.: Tribological behavior of Fe3O4/MoS2 nanocomposites additives in aqueous and oil phase media. Tribol. Int. 102, 79–87 (2016)CrossRefGoogle Scholar
  33. 33.
    Xu, Y., Peng, Y., Dearn, K.D., You, T., Geng, J., Hu, X.: Fabrication and tribological characterization of laser textured boron cast iron surfaces. Surf. Coat. Technol. 313, 391–401 (2017)CrossRefGoogle Scholar
  34. 34.
    Yu, H., He, J., Sun, L., Tanaka, S., Fugetsu, B.: Influence of the electrochemical reduction process on the performance of graphene-based capacitors. Carbon 51, 94–101 (2013)CrossRefGoogle Scholar
  35. 35.
    Bordes, A., Eom, K., Fuller, T.F.: The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes. J. Power Sources 257, 163–169 (2014)CrossRefGoogle Scholar
  36. 36.
    Zhou, J.G., Thompson, J., Cutler, J., Blyth, R., Kasrai, M., Bancroft, G.M., et al.: Resolving the chemical variation of phosphates in thin ZDDP tribofilms by X-ray photoelectron spectroscopy using synchrotron radiation: evidence for ultraphosphates and organic phosphates. Tribol. Lett. 39, 101–107 (2010)CrossRefGoogle Scholar
  37. 37.
    Bhattacharya, P., Nandasiri, M.I., Lv, D., Schwarz, A.M., Darsell, J.T., Henderson, W.A., et al.: Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes. Nano Energy 19, 176–186 (2016)CrossRefGoogle Scholar
  38. 38.
    Su, L., Hei, J., Wu, X., Wang, L., Zhou, Z.: Ultrathin layered hydroxide cobalt acetate nanoplates face-to-face anchored to graphene nanosheets for high-efficiency lithium storage. Adv. Funct. Mater. 27, 1605544 (2017)CrossRefGoogle Scholar
  39. 39.
    De Bonis, A., Lovaglio, T., Galasso, A., Santagata, A., Teghil, R.: Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid. Appl. Surf. Sci. 353, 433–438 (2015)CrossRefGoogle Scholar
  40. 40.
    Blanco, D., González, R., Viesca, J., Fernández-González, A., Bartolomé, M., Battez, A.H.: Antifriction and antiwear properties of an ionic liquid with fluorine-containing anion used as lubricant additive. Tribol. Lett. 65, 66 (2017)CrossRefGoogle Scholar
  41. 41.
    Strauss, E., Ardel, G., Livshits, V., Burstein, L., Golodnitsky, D., Peled, E.: Lithium polymer electrolyte pyrite rechargeable battery: comparative characterization of natural pyrite from different sources as cathode material. J. Power Sources 88, 206–218 (2000)CrossRefGoogle Scholar
  42. 42.
    Ferris, F., Tazaki, K., Fyfe, W.: Iron oxides in acid mine drainage environments and their association with bacteria. Chem. Geol. 74, 321–330 (1989)CrossRefGoogle Scholar
  43. 43.
    Xu, Y., Peng, Y., Zheng, X., Wang, H., Hu, X.: Influence of microalgal bio-oil on the lubrication properties of engine oil. Oil Gas Sci. Technol. 71, 29 (2016)CrossRefGoogle Scholar
  44. 44.
    Minfray, C., Martin, J., De Barros, M., Le Mogne, T., Kersting, R., Hagenhoff, B.: Chemistry of ZDDP tribofilm by ToF-SIMS. Tribol. Lett. 17, 351–357 (2004)CrossRefGoogle Scholar
  45. 45.
    You, Y.-L., Li, D.-X., Si, G.-J., Deng, X.: Investigation of the influence of solid lubricants on the tribological properties of polyamide 6 nanocomposite. Wear 311, 57–64 (2014)CrossRefGoogle Scholar
  46. 46.
    Loehlé, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., et al.: Mixed lubrication of steel by C18 fatty acids revisited. Part II: influence of some key parameters. Tribol. Int. 94, 207–216 (2016)CrossRefGoogle Scholar
  47. 47.
    Qi, X., Ma, J., Jia, Z., Yang, Y., Gao, H.: Effects of weft density on the friction and wear properties of self-lubricating fabric liners for journal bearings under heavy load conditions. Wear 318, 124–129 (2014)CrossRefGoogle Scholar
  48. 48.
    Xian, Y., Wang, Y., Wen, S., Nie, Q., Deng, J.: Floatability and oxidation of pyrite with different spatial symmetry. Miner. Eng. 72, 94–100 (2015)CrossRefGoogle Scholar
  49. 49.
    Patel, M., Aswath, P.: Role of thermal, mechanical and oxidising treatment on structure and chemistry of carbon black and its impact on wear and friction Part I: extreme pressure condition. Tribol. Mater. Surf. Interfaces 9, 1–18 (2015)CrossRefGoogle Scholar
  50. 50.
    Baldwin, B.A.: Relationship between surface composition and wear: an X-ray photoelectron spectroscopic study of surfaces tested with organosulfur compounds. ASLE Trans. 19, 335–344 (1976)CrossRefGoogle Scholar
  51. 51.
    Fantauzzi, M., Elsener, B., Atzei, D., Rigoldi, A., Rossi, A.: Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5, 75953–75963 (2015)CrossRefGoogle Scholar
  52. 52.
    Barros, M.I.D., Bouchet, J., Raoult, I., Mogne, T.L., Martin, J.M., Kasrai, M., et al.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254, 863–870 (2003)CrossRefGoogle Scholar
  53. 53.
    Zhou, L.H., Wei, X.C., Ma, Z.J., Mei, B.: Anti-friction performance of FeS nanoparticle synthesized by biological method. Appl. Surf. Sci. 407, 21–28 (2017)CrossRefGoogle Scholar
  54. 54.
    Singh, R.K., Gupta, P., Sharma, O.P., Ray, S.S.: Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. J. Ind. Eng. Chem. 24, 14–19 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yufu Xu
    • 1
  • Jingyuan Yu
    • 1
  • Jian Geng
    • 1
  • Rasha Abuflaha
    • 2
  • Dustin Olson
    • 2
  • Xianguo Hu
    • 1
  • Wilfred T. Tysoe
    • 2
  1. 1.Institute of Tribology, School of Mechanical EngineeringHefei University of TechnologyHefeiChina
  2. 2.Department of Chemistry and Biochemistry and Laboratory for Surface StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations