Abstract
The lubricating properties of water have been discussed extensively for millennia. Water films can exhibit wearless high friction in the form of cold ice, or act as lubricants in skating and skiing when a liquid. At the fundamental level, friction is the result of a balance between the rate of energy generation by phonon excitation during sliding and drainage of the energy from the interface by coupling with bulk atoms. Using atomic force microscopy, we found that when H2O intercalates between graphene and mica, it increases the friction between the tip and the substrate, dependent on the thickness of the water and graphene layers, while the magnitude of the increase in friction was reduced by D2O intercalation. With the help of first-principles density functional theory calculations, we explain this unexpected behavior by the increased spectral range of the vibration modes of graphene caused by water, and by better overlap of the graphene vibration modes with mica phonons, which favors more efficient energy dissipation. The larger increase in friction with H2O versus D2O shows that the high-frequency vibration modes of the water molecules play a very important role in the transfer of the vibrational energy of the graphene to the phonon bath of the substrate.
This is a preview of subscription content, access via your institution.










References
Persson, B.N.: Sliding Friction: Physical Principles and Applications. Springer Science & Business Media, New York (2000)
Park, J.Y., Salmeron, M.: Fundamental aspects of energy dissipation in friction. Chem. Rev. 114(1), 677–711 (2014)
Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318(5851), 780–783 (2007)
Park, J.Y., Ogletree, D., Thiel, P., Salmeron, M.: Electronic control of friction in silicon pn junctions. Science 313(5784), 186 (2006)
Kisiel, M., Gnecco, E., Gysin, U., Marot, L., Rast, S., Meyer, E.: Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 10(2), 119–122 (2011)
Kietzig, A.-M., Hatzikiriakos, S.G., Englezos, P.: Physics of ice friction. J. Appl. Phys. 107(8), 081101 (2010)
Bluhm, H., Inoue, T., Salmeron, M.: Friction of ice measured using lateral force microscopy. Phys. Rev. B 61, 7760 (2000)
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)
Xu, K., Cao, P., Heath, J.R.: Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329(5996), 1188–1191 (2010)
Severin, N., Lange, P., Sokolov, I.M., Rabe, J.P.: Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore. Nano Lett. 12(2), 774–779 (2012)
Li, Q., Song, J., Besenbacher, F., Dong, M.: Two-dimensional material confined water. Acc. Chem. Res. 48(1), 119–127 (2015)
Hu, J., Xiao, X., Ogletree, D., Salmeron, M.: Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 268(5208), 267 (1995)
Kim, J.-S., Choi, J.S., Lee, M.J., Park, B.H., Bukhvalov, D., Son, Y.-W., et al.: Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. Sci. Rep. 3, 2309 (2013)
Song, J., Li, Q., Wang, X., Li, J., Zhang, S., Kjems, J., et al.: Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 5, 4837 (2014)
Severin, N., Gienger, J., Scenev, V., Lange, P., Sokolov, I.M., Rabe, J.P.: Nanophase separation in monomolecularly thin water–ethanol films controlled by graphene. Nano Lett. 15(2), 1171–1176 (2015)
Cheng, M., Wang, D., Sun, Z., Zhao, J., Yang, R., Wang, G., et al.: A route toward digital manipulation of water nanodroplets on surfaces. ACS Nano 8(4), 3955–3960 (2014)
Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., et al.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)
Choi, J.S., Kim, J.-S., Byun, I.-S., Lee, D.H., Lee, M.J., Park, B.H., et al.: Friction anisotropy–driven domain imaging on exfoliated monolayer graphene. Science 333(6042), 607–610 (2011)
Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102(8), 086102 (2009)
Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12(12), 6043–6048 (2012)
Li, Q., Liu, X.-Z., Kim, S.-P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., et al.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14(9), 5212–5217 (2014)
Ko, J.-H., Kwon, S., Byun, I.-S., Choi, J.S., Park, B.H., Kim, Y.-H., et al.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50(2), 137–144 (2013)
Dong, Y., Wu, X., Martini, A.: Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701 (2013)
Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)
Ogletree, D., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996)
Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74(7), 3362–3367 (2003)
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)
Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)
Parlinski, K., Li, Z., Kawazoe, Y.: First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78(21), 4063 (1997)
Togo, A., Oba, F., Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78(13), 134106 (2008)
Shim, J., Lui, C.H., Ko, T.Y., Yu, Y.-J., Kim, P., Heinz, T.F., et al.: Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 12(2), 648–654 (2012)
Takahashi, T., Tokailin, H., Sagawa, T.: Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 32, 8317–8324 (1985)
Yu, Y.-J., Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P.: Tuning the graphene work function by electric field effect. Nano Lett. 9(10), 3430–3434 (2009)
Ferrari, A., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)
Malard, L., Pimenta, M., Dresselhaus, G., Dresselhaus, M.: Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)
Lee, D., Ahn, G., Ryu, S.: Two-dimensional water diffusion at a graphene–silica interface. J. Am. Chem. Soc. 136(18), 6634–6642 (2014)
Berciaud, S., Ryu, S., Brus, L.E., Heinz, T.F.: Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9(1), 346–352 (2008)
Campos-Delgado, J., Kim, Y., Hayashi, T., Morelos-Gómez, A., Hofmann, M., Muramatsu, H., et al.: Thermal stability studies of CVD-grown graphene nanoribbons: defect annealing and loop formation. Chem. Phys. Lett. 469(1–3), 177–182 (2009)
Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)
Yan, J., Zhang, Y., Kim, P., Pinczuk, A.: Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98(16), 166802 (2007)
Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K.S., Geim, A.K., Ferrari, A.C., et al.: Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)
Li, H., Zeng, X.C.: Two dimensional epitaxial water Adlayer on mica with graphene coating: an ab initio molecular dynamics study. J. Chem. Theory Comput. 8(9), 3034–3043 (2012)
Lee, H., Ko, J.-H., Choi, J.S., Hwang, J.H., Kim, Y.-H., Salmeron, M., et al.: Enhancement of friction by water intercalated between graphene and mica. J. Phys. Chem. Lett. 8(15), 3482–3487 (2017)
Gordillo, M.C., Martı́, J.: Molecular dynamics description of a layer of water molecules on a hydrophobic surface. J. Chem. Phys. 117(7), 3425–3430 (2002)
Soper, A.K., Benmore, C.J.: Quantum differences between heavy and light water. Phys. Rev. Lett. 101(6), 065502 (2008)
He, K.T., Wood, J.D., Doidge, G.P., Pop, E., Lyding, J.W.: Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. Nano Lett. 12(6), 2665–2672 (2012)
Odelius, M., Bernasconi, M., Parrinello, M.: Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 78(14), 2855–2858 (1997)
Acknowledgements
This work was supported by the Institute for Basic Science [IBS-R004-A2-2017-a00]. M.S. was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 (FWP KC3101). J.-H.K. and Y.-H.K. were supported by the NRF (2015R1A2A2A05027766), SRC (2016R1A5A1008184), and Global Frontier R&D (2011-0031566) programs of Korea.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, H., Ko, JH., Song, H.C. et al. Isotope- and Thickness-Dependent Friction of Water Layers Intercalated Between Graphene and Mica. Tribol Lett 66, 36 (2018). https://doi.org/10.1007/s11249-018-0984-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11249-018-0984-3
Keywords
- Phonon mode
- Excitation and transfer
- Water molecules
- Nanoscale friction