Skip to main content

Advertisement

Log in

Isotope- and Thickness-Dependent Friction of Water Layers Intercalated Between Graphene and Mica

Tribology Letters Aims and scope Submit manuscript

Abstract

The lubricating properties of water have been discussed extensively for millennia. Water films can exhibit wearless high friction in the form of cold ice, or act as lubricants in skating and skiing when a liquid. At the fundamental level, friction is the result of a balance between the rate of energy generation by phonon excitation during sliding and drainage of the energy from the interface by coupling with bulk atoms. Using atomic force microscopy, we found that when H2O intercalates between graphene and mica, it increases the friction between the tip and the substrate, dependent on the thickness of the water and graphene layers, while the magnitude of the increase in friction was reduced by D2O intercalation. With the help of first-principles density functional theory calculations, we explain this unexpected behavior by the increased spectral range of the vibration modes of graphene caused by water, and by better overlap of the graphene vibration modes with mica phonons, which favors more efficient energy dissipation. The larger increase in friction with H2O versus D2O shows that the high-frequency vibration modes of the water molecules play a very important role in the transfer of the vibrational energy of the graphene to the phonon bath of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Persson, B.N.: Sliding Friction: Physical Principles and Applications. Springer Science & Business Media, New York (2000)

    Book  Google Scholar 

  2. Park, J.Y., Salmeron, M.: Fundamental aspects of energy dissipation in friction. Chem. Rev. 114(1), 677–711 (2014)

    Article  Google Scholar 

  3. Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318(5851), 780–783 (2007)

    Article  Google Scholar 

  4. Park, J.Y., Ogletree, D., Thiel, P., Salmeron, M.: Electronic control of friction in silicon pn junctions. Science 313(5784), 186 (2006)

    Article  Google Scholar 

  5. Kisiel, M., Gnecco, E., Gysin, U., Marot, L., Rast, S., Meyer, E.: Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 10(2), 119–122 (2011)

    Article  Google Scholar 

  6. Kietzig, A.-M., Hatzikiriakos, S.G., Englezos, P.: Physics of ice friction. J. Appl. Phys. 107(8), 081101 (2010)

    Article  Google Scholar 

  7. Bluhm, H., Inoue, T., Salmeron, M.: Friction of ice measured using lateral force microscopy. Phys. Rev. B 61, 7760 (2000)

    Article  Google Scholar 

  8. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  9. Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  Google Scholar 

  10. Xu, K., Cao, P., Heath, J.R.: Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329(5996), 1188–1191 (2010)

    Article  Google Scholar 

  11. Severin, N., Lange, P., Sokolov, I.M., Rabe, J.P.: Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore. Nano Lett. 12(2), 774–779 (2012)

    Article  Google Scholar 

  12. Li, Q., Song, J., Besenbacher, F., Dong, M.: Two-dimensional material confined water. Acc. Chem. Res. 48(1), 119–127 (2015)

    Article  Google Scholar 

  13. Hu, J., Xiao, X., Ogletree, D., Salmeron, M.: Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 268(5208), 267 (1995)

    Article  Google Scholar 

  14. Kim, J.-S., Choi, J.S., Lee, M.J., Park, B.H., Bukhvalov, D., Son, Y.-W., et al.: Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. Sci. Rep. 3, 2309 (2013)

    Article  Google Scholar 

  15. Song, J., Li, Q., Wang, X., Li, J., Zhang, S., Kjems, J., et al.: Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 5, 4837 (2014)

    Article  Google Scholar 

  16. Severin, N., Gienger, J., Scenev, V., Lange, P., Sokolov, I.M., Rabe, J.P.: Nanophase separation in monomolecularly thin water–ethanol films controlled by graphene. Nano Lett. 15(2), 1171–1176 (2015)

    Article  Google Scholar 

  17. Cheng, M., Wang, D., Sun, Z., Zhao, J., Yang, R., Wang, G., et al.: A route toward digital manipulation of water nanodroplets on surfaces. ACS Nano 8(4), 3955–3960 (2014)

    Article  Google Scholar 

  18. Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., et al.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)

    Article  Google Scholar 

  19. Choi, J.S., Kim, J.-S., Byun, I.-S., Lee, D.H., Lee, M.J., Park, B.H., et al.: Friction anisotropy–driven domain imaging on exfoliated monolayer graphene. Science 333(6042), 607–610 (2011)

    Article  Google Scholar 

  20. Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102(8), 086102 (2009)

    Article  Google Scholar 

  21. Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12(12), 6043–6048 (2012)

    Article  Google Scholar 

  22. Li, Q., Liu, X.-Z., Kim, S.-P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., et al.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14(9), 5212–5217 (2014)

    Article  Google Scholar 

  23. Ko, J.-H., Kwon, S., Byun, I.-S., Choi, J.S., Park, B.H., Kim, Y.-H., et al.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50(2), 137–144 (2013)

    Article  Google Scholar 

  24. Dong, Y., Wu, X., Martini, A.: Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701 (2013)

    Article  Google Scholar 

  25. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)

    Article  Google Scholar 

  26. Ogletree, D., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996)

    Article  Google Scholar 

  27. Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74(7), 3362–3367 (2003)

    Article  Google Scholar 

  28. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  29. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    Article  Google Scholar 

  30. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

    Article  Google Scholar 

  31. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    Article  Google Scholar 

  32. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    Article  Google Scholar 

  33. Parlinski, K., Li, Z., Kawazoe, Y.: First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78(21), 4063 (1997)

    Article  Google Scholar 

  34. Togo, A., Oba, F., Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78(13), 134106 (2008)

    Article  Google Scholar 

  35. Shim, J., Lui, C.H., Ko, T.Y., Yu, Y.-J., Kim, P., Heinz, T.F., et al.: Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 12(2), 648–654 (2012)

    Article  Google Scholar 

  36. Takahashi, T., Tokailin, H., Sagawa, T.: Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 32, 8317–8324 (1985)

    Article  Google Scholar 

  37. Yu, Y.-J., Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P.: Tuning the graphene work function by electric field effect. Nano Lett. 9(10), 3430–3434 (2009)

    Article  Google Scholar 

  38. Ferrari, A., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Article  Google Scholar 

  39. Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)

    Article  Google Scholar 

  40. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)

    Article  Google Scholar 

  41. Malard, L., Pimenta, M., Dresselhaus, G., Dresselhaus, M.: Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)

    Article  Google Scholar 

  42. Lee, D., Ahn, G., Ryu, S.: Two-dimensional water diffusion at a graphene–silica interface. J. Am. Chem. Soc. 136(18), 6634–6642 (2014)

    Article  Google Scholar 

  43. Berciaud, S., Ryu, S., Brus, L.E., Heinz, T.F.: Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9(1), 346–352 (2008)

    Article  Google Scholar 

  44. Campos-Delgado, J., Kim, Y., Hayashi, T., Morelos-Gómez, A., Hofmann, M., Muramatsu, H., et al.: Thermal stability studies of CVD-grown graphene nanoribbons: defect annealing and loop formation. Chem. Phys. Lett. 469(1–3), 177–182 (2009)

    Article  Google Scholar 

  45. Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)

    Article  Google Scholar 

  46. Yan, J., Zhang, Y., Kim, P., Pinczuk, A.: Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98(16), 166802 (2007)

    Article  Google Scholar 

  47. Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K.S., Geim, A.K., Ferrari, A.C., et al.: Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)

    Article  Google Scholar 

  48. Li, H., Zeng, X.C.: Two dimensional epitaxial water Adlayer on mica with graphene coating: an ab initio molecular dynamics study. J. Chem. Theory Comput. 8(9), 3034–3043 (2012)

    Article  Google Scholar 

  49. Lee, H., Ko, J.-H., Choi, J.S., Hwang, J.H., Kim, Y.-H., Salmeron, M., et al.: Enhancement of friction by water intercalated between graphene and mica. J. Phys. Chem. Lett. 8(15), 3482–3487 (2017)

    Article  Google Scholar 

  50. Gordillo, M.C., Martı́, J.: Molecular dynamics description of a layer of water molecules on a hydrophobic surface. J. Chem. Phys. 117(7), 3425–3430 (2002)

    Article  Google Scholar 

  51. Soper, A.K., Benmore, C.J.: Quantum differences between heavy and light water. Phys. Rev. Lett. 101(6), 065502 (2008)

    Article  Google Scholar 

  52. He, K.T., Wood, J.D., Doidge, G.P., Pop, E., Lyding, J.W.: Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. Nano Lett. 12(6), 2665–2672 (2012)

    Article  Google Scholar 

  53. Odelius, M., Bernasconi, M., Parrinello, M.: Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 78(14), 2855–2858 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science [IBS-R004-A2-2017-a00]. M.S. was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 (FWP KC3101). J.-H.K. and Y.-H.K. were supported by the NRF (2015R1A2A2A05027766), SRC (2016R1A5A1008184), and Global Frontier R&D (2011-0031566) programs of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Young Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Ko, JH., Song, H.C. et al. Isotope- and Thickness-Dependent Friction of Water Layers Intercalated Between Graphene and Mica. Tribol Lett 66, 36 (2018). https://doi.org/10.1007/s11249-018-0984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-0984-3

Keywords

Navigation