Tribology Letters

, 66:28 | Cite as

Graphene Oxide-Grafted Hybrid-Fabric Composites with Simultaneously Improved Mechanical and Tribological Properties

  • Junya Yuan
  • Zhaozhu Zhang
  • Mingming Yang
  • Peilong Li
  • Xuehu Men
  • Weimin Liu
Original Paper


Poor fabric/matrix interfacial adhesion and inferior thermal properties of polymer matrix severely hinder the continued development of hybrid Nomex/PTFE fabric-reinforced polymer composites for advanced tribological applications. Graphene oxide (GO) grafted on fibers has been widely used to reinforce polymer composites and improves the fiber/matrix interface. This study focuses on the tribological and adhesion properties of GO-grafted hybrid-fabric composites. Hybrid Nomex/PTFE fabric-GO multiscale reinforcement was prepared by a novel technique where a hydrothermal carbonization functional primer coating was initially applied on hybrid-fabric followed by chemically attaching GO. The microstructure and chemical composition of modified hybrid-fabrics were comprehensively investigated by SEM, FTIR, and XPS. Results indicated an obvious increase in surface functional groups and wettability. Tensile and peeling testing results showed that the GO-grafted hybrid-fabric composites exhibited 27.3 and 73.6% enhancement in tensile and interfacial bonding strength, compared to that of pristine hybrid-fabric composites. Furthermore, GO modification forming a percolating network on hybrid-fabric within the polymer matrix effectively promoted the thermal stability and heat conductivity of hybrid-fabric composites. Wear tests also showed the anti-wear performance of the modified hybrid-fabric composites was enhanced obviously due to improved interfacial bonding and thermal properties.


Fabrics/textiles Polymer matrix composites (PMCs) Fiber/matrix bond Wear 



The authors gratefully acknowledge the financial support from the National Science Foundation of China (Grant Nos. 51375472, and 51675252).

Supplementary material

11249_2017_978_MOESM1_ESM.docx (336 kb)
Supplementary material 1 (DOCX 336 kb)


  1. 1.
    Yang, M., Zhang, Z., Yuan, J., Guo, F., Men, X., Liu, W.: Synergistic effects of AlB2 and fluorinated graphite on the mechanical and tribological properties of hybrid fabric composites. Compos. Sci. Technol. 143, 75–81 (2017)CrossRefGoogle Scholar
  2. 2.
    Yuan, J., Zhang, Z., Yang, M., Guo, F., Men, X., Liu, W.: Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors. Tribol. Int. 107, 10–17 (2017)CrossRefGoogle Scholar
  3. 3.
    Chen, B., Li, X., Li, X., Jia, Y., Yang, J., Yang, G., Li, C.: Friction and wear properties of polyimide-based composites with a multiscale carbon fiber-carbon nanotube hybrid. Tribol. Lett. 65, 111 (2017)CrossRefGoogle Scholar
  4. 4.
    Fu, S., Yu, B., Duan, L., Bai, H., Chen, F., Wang, K., Deng, H., Zhang, Q., Fu, Q.: Combined effect of interfacial strength and fiber orientation on mechanical performance of short Kevlar fiber reinforced olefin block copolymer. Compos. Sci. Technol. 108, 23–31 (2015)CrossRefGoogle Scholar
  5. 5.
    Tiwari, S., Bijwe, J., Panier, S.: Role of nano-YbF3-treated carbon fabric on improving abrasive wear performance of polyetherimide composites. Tribol. Lett. 42, 293–300 (2011)CrossRefGoogle Scholar
  6. 6.
    Khan, Z., Yousif, B., Islam, M.: Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos. Part B 116, 186–199 (2017)CrossRefGoogle Scholar
  7. 7.
    Qiu, M., Yang, Z., Lu, J., Li, Y., Zhou, D.: Influence of step load on tribological properties of self-lubricating radial spherical plain bearings with PTFE fabric liner. Tribol. Int. 113, 344–353 (2017)CrossRefGoogle Scholar
  8. 8.
    Liu, P., Huang, T., Lu, R., Li, T.: Tribological properties of modified carbon fabric/polytetrafluoroethylene composites. Wear 289, 17–25 (2012)CrossRefGoogle Scholar
  9. 9.
    Ren, G., Zhang, Z., Zhu, X., Men, X., Jiang, W., Liu, W.: Combined effect of air-plasma treatment and lubricant filling on the dry sliding wear behavior of hybrid PTFE/Nomex fabric/phenolic composite. Compos. Sci. Technol. 100, 204–211 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Greef, N., Kalinka, G., Bilzen, B., Locquet, J., Verpoest, I., Seo, J.: Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale. Compos. Part B 126, 202–210 (2017)CrossRefGoogle Scholar
  11. 11.
    Chen, J., Xiao, P., Xiong, X.: The mechanical properties and thermal conductivity of carbon/carbon composites with the fiber/matrix interface modified by silicon carbide nanofibers. Mater. Des. 84, 285–290 (2015)CrossRefGoogle Scholar
  12. 12.
    Patterson, B.A., Sodano, H.A.: Enhanced interfacial strength and UV shielding of Aramid fiber composites through ZnO nanoparticle sizing. ACS Appl. Mater. Interfaces 8, 33963–33971 (2016)CrossRefGoogle Scholar
  13. 13.
    Rider, A.N., Yeo, E., Gopalakrishna, J., Thostenson, E.T., Brack, N.: Hierarchical composites with high-volume fractions of carbon nanotubes: influence of plasma surface treatment and thermoplastic nanophase-modified epoxy. Carbon 94, 971–981 (2015)CrossRefGoogle Scholar
  14. 14.
    Wu, G., Ma, L., Liu, L., Wang, Y., Xie, F., Zhong, Z., Zhao, M., Jiang, B., Huang, Y.: Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers. Compos. Part B 82, 50–58 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhang, R., Gao, B., Ma, Q., Zhang, J., Cui, H., Liu, L.: Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites. Mater. Des. 93, 364–369 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D., Ge, H.: Modifying glass fibers with graphene oxide: towards high-performance polymer composites. Compos. Sci. Technol. 97, 41–45 (2014)CrossRefGoogle Scholar
  17. 17.
    Li, Y.W., Zhao, F., Song, Y.J., Li, J., Hu, Z., Huang, Y.D.: Interfacial microstructure and properties of poly (phenylene benzobisoxazole) fiber grafted with graphene oxide via solvothermal method. Appl. Surf. Sci. 266, 306–312 (2013)CrossRefGoogle Scholar
  18. 18.
    Zhang, R.L., Gao, B., Du, W.T., Zhang, J., Cui, H.Z., Liu, L., Ma, Q.H., Wang, C.G., Li., F.H.: Enhanced mechanical properties of multiscale carbon fiber/epoxy composites by fiber surface treatment with graphene oxide/polyhedral oligomeric silsesquioxane. Compos. Part A 84, 455–463 (2016)CrossRefGoogle Scholar
  19. 19.
    Kumar, V., Sinha, S.K., Agarwal, A.K.: Tribological studies of epoxy composites with solid and liquid fillers. Tribol. Int. 105, 27–36 (2017)CrossRefGoogle Scholar
  20. 20.
    Beckford, S., Cai, J., Fleming, R., Zou, M.: The effects of graphite filler on the tribological properties of polydopamine/PTFE coatings. Tribol. Lett. 64, 42 (2016)CrossRefGoogle Scholar
  21. 21.
    Yang, J., Xia, Y., Song, H., Chen, B., Zhang, Z.: Synthesis of the liquid-like graphene with excellent tribological properties. Tribol. Int. 105, 118–124 (2017)CrossRefGoogle Scholar
  22. 22.
    Padenko, E., Rooyen, L., Karger-Kocsis, J.: Transfer film formation in PTFE/Oxyfluorinated graphene nanocomposites during dry sliding. Tribol. Lett. 65, 36 (2017)CrossRefGoogle Scholar
  23. 23.
    Han, W., Zhao, G., Zhang, X., Zhou, S., Wang, P., An, Y., Xu, B.: Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability. Carbon 95, 157–165 (2015)CrossRefGoogle Scholar
  24. 24.
    Li, Y., Peng, Q., He, X., Hu, P., Wang, C., Shang, Y., Wang, R., Jiao, W., Lv, H.: Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. J. Mater. Chem. 22, 18748 (2012)CrossRefGoogle Scholar
  25. 25.
    Gil-Herrera, L.K., Blanco, A., Juarez, B.H., Lopez, C.: Seeded synthesis of monodisperse core-shell and hollow carbon spheres. Small 12, 4357–4362 (2016)CrossRefGoogle Scholar
  26. 26.
    Jia, B., Qin, M., Zhang, Z., Chu, A., Zhang, L., Liu, Y., Lu, H., Qu, X.: One-pot synthesis of Cu–carbon hybrid hollow spheres. Carbon 62, 472–480 (2013)CrossRefGoogle Scholar
  27. 27.
    Wang, T., Cui, J., Ouyang, S., Cui, W., Wang, S.: A new approach to understand the Cassie state of liquids on superamphiphobic materials. Nanoscale 8, 3031–3039 (2016)CrossRefGoogle Scholar
  28. 28.
    Chen, X., Xu, H., Liu, D., Yan, C., Zhu, Y.: A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites. Appl. Surf. Sci. 410, 530–539 (2017)CrossRefGoogle Scholar
  29. 29.
    Yuan, X., Zhu, B., Cai, X., Liu, J., Qiao, K., Yu, J.: Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing. Appl. Surf. Sci. 401, 414–423 (2017)CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Torkelson, J.M.: Enhancement of surface wettability by incorporating polar initiator fragments at chain ends of low-molecular-weight polymers. ACS Appl. Mater. Interfaces. 9, 12176–12181 (2017)CrossRefGoogle Scholar
  31. 31.
    Scaffaro, R., Maio, A.: A green method to prepare nanosilica modified graphene oxide to inhibit nanoparticles re-aggregation during melt processing. Chem. Eng. J. 308, 1034–1047 (2017)CrossRefGoogle Scholar
  32. 32.
    Song, N., Jiao, D., Cui, S., Hou, X., Ding, P., Shi, L.: Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces. 9, 2924–2932 (2017)CrossRefGoogle Scholar
  33. 33.
    Zhang, R.L., Gao, B., Ma, Q.H., Zhang, J., Cui, H.Z., Liu, L.: Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites. Mater. Des. 93, 364–369 (2016)CrossRefGoogle Scholar
  34. 34.
    Chen, L., Du, Y., Huang, Y., Wu, F., Cheng, H.M., Fei, B., Xin, J.H.: Hierarchical poly(p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer. Compos. Part A. 88, 123–130 (2016)CrossRefGoogle Scholar
  35. 35.
    Li, Q., Church, J.S., Naebe, M., Fox, B.L.: Interfacial characterization and reinforcing mechanism of novel carbon nanotube—carbon fibre hybrid composites. Carbon 109, 74–86 (2016)CrossRefGoogle Scholar
  36. 36.
    Shen, J.T., Top, M., Pei, Y.T., De Hosson, J.T.M.: Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles. Wear 322–323, 171–180 (2015)CrossRefGoogle Scholar
  37. 37.
    Samyn, P.: Tribological properties and thermomechanical analysis of unsaturated polyester fabric composite in oscillating line-contact sliding. Tribol. Int 99, 127–139 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solid LubricationLanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations