Skip to main content
Log in

Development of a Composite Friction Material with Excellent Fade Resistance by Employing Oversized Ceramic Particles

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Non-asbestos organic friction materials have historically been developed through a series of trial-and-error experimental procedure. But in this work, the friction theory was used to design and prepare a new composite friction material with excellent fade resistance. Oversized (3.0 ± 0.5 mm) SiO2-based particles with the great thermal stability and large contact area against the disc were used to reinforce the resin matrix. The effectiveness of the oversized particles relative to particles of other sizes was evaluated using an established test procedure. The results showed that the oversized particles improve the fade resistance and wear resistance of materials, but not followed with excessive disc wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ertan, R., Yavuz, N.: An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials. Wear 268, 1524–1532 (2010)

    Article  Google Scholar 

  2. Singh, T., Patnaik, A., Chauhan, R., Rishiraj, A.: Assessment of braking performance of lapinus–wollastonite fibre reinforced friction composite materials. J. King Saud. Univ. Eng. Sci. 29, 183–190 (2017)

    Google Scholar 

  3. Satapathy, B.K., Bijwe, J.: Composite friction materials based on organic fibres: sensitivity of friction and wear to operating variables. Compos. Part A Appl. Sci. Manuf. 37, 1557–1567 (2006)

    Article  Google Scholar 

  4. Cai, P., Li, Z.L., Wang, T.M., Wang, Q.H.: Effect of aspect ratios of aramid fiber on mechanical and tribological behaviors of friction materials. Tribol. Int. 92, 109–116 (2015)

    Article  Google Scholar 

  5. Zhu, Z.C., Xu, L., Chen, G.A.: Effect of different whiskers on the physical and tribological properties of non-metallic friction materials. Mater. Des. 32, 54–61 (2011)

    Article  Google Scholar 

  6. Öztürk, B.: Effects of different kinds of fibres on mechanical and tribological properties of brake friction materials. Tribol. Trans. 56, 536–545 (2013)

    Article  Google Scholar 

  7. Zhao, G., Hussainova, I., Antonov, M., Wang, Q.H., Wang, T.M.: Friction and wear of fiber reinforced polyimide composites. Wear 301, 122–129 (2013)

    Article  Google Scholar 

  8. Baklouti, M., Cristol, A.L., Desplanques, Y., Elleuch, R.: Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear 330–331, 507–514 (2015)

    Article  Google Scholar 

  9. Aranganathan, N., Bijwe, J.: Comparative performance evaluation of NAO friction materials containing natural graphite and thermo-graphite. Wear 358–359, 17–22 (2016)

    Article  Google Scholar 

  10. Kim, S.J., Hyung Cho, M., Hyung Cho, K., Jang, H.: Complementary effects of solid lubricants in the automotive brake lining. Tribol. Int. 40, 15–20 (2007)

    Article  Google Scholar 

  11. Cho, M.H., Kim, S.J., Kim, D., Jang, H.: Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear 258, 1682–1687 (2005)

    Article  Google Scholar 

  12. Kumar, M., Boidin, X., Desplanques, Y., Bijwe, J.: Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking. Wear 270, 371–381 (2011)

    Article  Google Scholar 

  13. Boz, M., Kurt, A.: The effect of Al2O3 on the friction performance of automotive brake friction materials. Tribol. Int. 40, 1161–1169 (2007)

    Article  Google Scholar 

  14. Hamid, M.K.A., Stachowiak, G.W., Syahrullail, S.: The effect of external grit particle size on friction coefficients and grit embedment of brake friction material. Proc. Eng. 68, 7–11 (2013)

    Article  Google Scholar 

  15. Matějka, V., Lu, Y., Jiao, L., Huang, L., Martynková, G.S.: Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications. Tribol. Int. 43, 144–151 (2010)

    Article  Google Scholar 

  16. Ma, Y., Martynková, G.S., Valášková, M., Matějka, V., Lu, Y.: Effects of ZrSiO4 in non-metallic brake friction materials on friction performance. Tribol. Int. 41, 166–174 (2008)

    Article  Google Scholar 

  17. Ji, Z., Jin, H., Luo, W., et al.: The effect of crystallinity of potassium titanate whisker on the tribological behavior of NAO friction materials. Tribol. Int. 107, 213–220 (2017)

    Article  Google Scholar 

  18. Derradji, M., Ramdani, N., Zhang, T., Wang, J., Feng, T.T., Wang, H., Liu, W.B.: Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater. Des. 71, 48–55 (2015)

    Article  Google Scholar 

  19. Bijwe, J., Aranganathan, N., Sharma, S., Dureja, N., Kumar, R.: Nano-abrasives in friction materials-influence on tribological properties. Wear 296, 693–701 (2012)

    Article  Google Scholar 

  20. Hee, K.W., Filip, P.: Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear 259, 1088–1096 (2005)

    Article  Google Scholar 

  21. Mutlu, I., Eldogan, O., Findik, F.: Production of ceramic additive automotive brake lining and investigation of its braking characterisation. Ind. Lubr. Tribol. 57, 84–92 (2005)

    Article  Google Scholar 

  22. Saffar, A., Shojaei, A.: Effect of rubber component on the performance of brake friction materials. Wear 274–275, 286–297 (2012)

    Article  Google Scholar 

  23. Glaseser, W.A.: Characterization of Tribological Materials. Harbin Institute of Technology Press, Harbin (2014)

    Google Scholar 

  24. Kragel’skiĭ, I.V., Kombalov, V.S., Dobychin, M.N.: Friction and Wear Calculation Methods. Pergamon Press, New York (1982)

    Google Scholar 

  25. Eriksson, M., Jacobson, S.: Tribological surfaces of organic brake pads. Tribol. Int. 33, 817–827 (2000)

    Article  Google Scholar 

  26. Cai, P., Wang, Y.M., Wang, T.M., Wang, Q.H.: Effect of resins on thermal, mechanical and tribological properties of friction materials. Tribol. Int. 87, 1–10 (2015)

    Article  Google Scholar 

  27. Bijwe, J., Nidhi, M., Majumdar, N., Satapathy, B.K.: Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear 259, 1068–1078 (2005)

    Article  Google Scholar 

  28. Cho, K.H., Jang, H., Hong, Y.S., Kim, S.J., Basch, R.H., Fash, J.W.: The size effect of zircon particles on the friction characteristics of brake lining materials. Wear 264, 291–297 (2008)

    Article  Google Scholar 

  29. Barros, L.Y., Neis, P.D., Ferreira, N.F., Pavlak, R.P., Masotti, D., Matozo, L.T., Sukumaran, J., De Baets, P., Andó, M.: Morphological analysis of pad–disc system during braking operations. Wear 352–353, 112–121 (2016)

    Article  Google Scholar 

  30. Fei, J., Luo, W., Huang, J.F., Ouyang, H.B., Xu, Z.W., Yao, C.Y.: Effect of carbon fiber content on the friction and wear performance of paper-based friction materials. Tribol. Int. 87, 91–97 (2015)

    Article  Google Scholar 

  31. Guan, Q.F., Li, G.Y., Wang, H.Y., An, J.: Friction-wear characteristics of carbon fiber reinforced friction material. J. Mater. Sci. 39, 641–643 (2004)

    Article  Google Scholar 

  32. Gopal, P., Dharani, L.R., Blum, F.D.: Load, speed and temperature sensitivities of a carbon-fiber-reinforced phenolic friction material. Wear 181–183, 913–921 (1995)

    Article  Google Scholar 

  33. Fu, H., Liao, B., Qi, F.J., Sun, B.C., Liu, A.P., Ren, D.L.: The application of PEEK in stainless steel fiber and carbon fiber reinforced composites. Compos. Part B Eng. 39, 585–591 (2008)

    Article  Google Scholar 

  34. Österle, W., Dörfel, I., Prietzel, C., Rooch, H., Cristol-Bulthé, A.L., Degallaix, D., Desplanques, Y.: A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test. Wear 267, 781–788 (2009)

    Article  Google Scholar 

  35. Wang, F.H., Liu, Y.: Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber. Mater. Des. 57, 449–455 (2014)

    Article  Google Scholar 

  36. Patnaik, A., Kumar, M., Satapathy, B.K., Tomar, B.S.: Performance sensitivity of hybrid phenolic composites in friction braking: effect of ceramic and aramid fibre combination. Wear 269, 891–899 (2010)

    Article  Google Scholar 

  37. Cho, M.H., Cho, K.H., Kim, S.J., Kim, D.H., Jang, H.: The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks. Tribol. Lett. 20, 101–108 (2005)

    Article  Google Scholar 

  38. Bijwe, J., Kumar, M.: Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear 263, 1243–1248 (2007)

    Article  Google Scholar 

  39. Blau, P.J., McLaughlin, J.C.: Effects of water films and sliding speed on the frictional behavior of truck disc brake materials. Tribol. Int. 36, 709–715 (2003)

    Article  Google Scholar 

  40. Eriksson, M., Lord, J., Jacobson, S.: Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249, 272–278 (2001)

    Article  Google Scholar 

  41. Fischer, T.E.: Friction and wear of ceramics. Tribol. Int. 100, 333–353 (1984)

    Google Scholar 

  42. Hsu, S.M., Shen, M.: Wear prediction of ceramics. Wear 256, 867–878 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program (“863” Program) of China under Grant Number SS2015AA042502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Zhou, W., Liu, J. et al. Development of a Composite Friction Material with Excellent Fade Resistance by Employing Oversized Ceramic Particles. Tribol Lett 66, 22 (2018). https://doi.org/10.1007/s11249-017-0974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0974-x

Keywords

Navigation