Skip to main content
Log in

Some Comments on Hydrogel and Cartilage Contact Mechanics and Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We discuss the origin of the low friction observed for some elastically soft materials, such as hydrogels and the human cartilage. When a soft elastic solid is squeezed against another solid in a fluid, if the nominal contact pressure is high enough, after long enough contact time the contact area percolates, resulting in islands of confined fluid. For charged surfaces, with charges of equal sign, the osmotic pressure in the area of “real contact” may be large enough to keep the surfaces separated at nanometer separation. In this case the solid contact pressure (here the osmotic pressure) in the area of “real contact” will be nearly independent of the external load. The finite surface separation in the area of “real contact” results in a very small (breakloose) friction force even after long time of stationary contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma, S., Scaraggi, M., Wang, D., Wang, X., Liang, Y., Liu, W., Dini, D., Zhou, F.: Nanoporous substrate-infiltrated hydrogels: a bioinspired regenerable surface for high load bearing and tunable friction. Adv. Funct. Mater. 25(47), 7366–7374 (2015)

    Article  Google Scholar 

  2. Ma, S., Scaraggi, M., Lin, P., Yu, B., Wang, D., Dini, D., Zhou, F.: Nanohydrogel brushes for switchable underwater adhesion. J. Phys. Chem. C 121(15), 8452–8463 (2017)

    Article  Google Scholar 

  3. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102, 73 (1980)

    Article  Google Scholar 

  4. Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163 (2009)

    Article  Google Scholar 

  5. Krishnan, R., Kopacz, M., Ateshian, G.A.: Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22, 565 (2004)

    Article  Google Scholar 

  6. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59 (2014)

    Article  Google Scholar 

  7. Ahmed, J., Guo, H., Yamamoto, T., Kurokawa, T., Takahata, M., Nakajima, T., Gong, J.P.: Sliding friction of zwitterionic hydrogel and its electrostatic origin. Macromolecules 47, 3101 (2014)

    Article  Google Scholar 

  8. Yamamoto, T., Kurokawa, T., Ahmed, J., Kamita, G., Yashima, S., Furukawa, Y., Ota, Y., Furukawa, H., Gong, J.P.: In situ observation of a hydrogel-glass interface during sliding friction. Soft Matter 10, 5589 (2014)

    Article  Google Scholar 

  9. Noble, P., Collin, B., Lecomte-Beckers, J., Magnee, A., Denoix, J.M., Serteyn, D.: An equine joint friction test model using a cartilage-on-cartilage arrangement. The Vet. J. 183, 148 (2010)

    Article  Google Scholar 

  10. Greene, G.W., Banquy, X., Lee, D.W., Lowrey, D.D., Yu, J., Israelachvilia, J.N.: Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc. Natl. Acad. Sci. USA 108, 5255 (2011)

    Article  Google Scholar 

  11. Greene, G.W., Zappone, B., Zhao, B., Söderman, O., Topgaard, D., Rata, G., Israelachvili, J.N.: Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication. Biomaterials 29, 4455 (2008)

    Article  Google Scholar 

  12. Kwan, M.K., Lai, W.M., Mow, V.C.: Fundamentals of fluid transport through cartilage in compression. Ann. Biomed. Eng. 12, 537 (1984)

    Article  Google Scholar 

  13. Jahn, S., Klein, J.: Hydration lubrication: the macromolecular domain. Macromolecules 48, 5059 (2015)

    Article  Google Scholar 

  14. Seror, J., Zhu, L., Goldberg, R., Day, A.J., Klein, J.: Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 6, 6497 (2015)

    Article  Google Scholar 

  15. Dhopatkar, N., Defante, A.P., Dhinojwala, A.: Ice-like water supports hydration forces and eases sliding friction. Sci. Adv. 2, e1600763 (2016)

    Article  Google Scholar 

  16. Walker, P.S., Dowson, D., Longfield, M.D., Wright, V.: Boosted lubrication in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512 (1968)

    Article  Google Scholar 

  17. Lee, S., Spencer, N.D.: Sweet, hairy, soft, and slippery. Sci. New York then Washington 319, 575 (2008)

    Article  Google Scholar 

  18. Gong, J.P., Osada, Y.: Soft and wet materials: from hydrogels to biotissues. Adv. Polym. Sci. 236, 203 (2010)

    Article  Google Scholar 

  19. Yashima, S., Takase, N., Kurokawa, T., Gong, J.P.: Friction of hydrogels with controlled surface roughness on solid flat substrates. Soft Matter 10, 3192 (2014)

    Article  Google Scholar 

  20. Ahmed, J., Gong, J.P.: Hydrogel as Low-Friction Materials, Encyclopedia of Polymeric Nanomaterials, pp. 1–10. Springer, Berlin (2014)

    Book  Google Scholar 

  21. Gong, J.P.: Friction and lubrication of hydrogels-its richness and complexity. Soft Matter 2, 544 (2006)

    Article  Google Scholar 

  22. Pitenis, A.A., Uruena, J.M., Cooper, A.C., Angelini, T.E., Sawyer, W.G.: Superlubricity in gemini hydrogels. J. Tribol. 138, 042103 (2016)

    Article  Google Scholar 

  23. Schulze, K., Pitenis, A.A., Uruena, J.M., Nixon, R., Dunn, A.C., Angelini, T., Sawyer, W.G.: Speed-dependent lubricity of high water content hydrogels. Investig. Ophthalmol. Vis. Sci. 56, 6094 (2015)

    Google Scholar 

  24. Saintyves, B., Jules, T., Salez, T., Mahadevan, L.: Self-sustained lift and low friction via soft lubrication. Proc. Natl. Acad. Sci. USA 113, 5847 (2016)

    Article  Google Scholar 

  25. Ghnatios, C., Mathis, C.H., Simic, R., Spencer, N.D., Chinesta, F.: Modeling soft, permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation. Soft Matter 13, 4482 (2017)

    Article  Google Scholar 

  26. Persson, B.N.J.: Contact mechanics for poroelastic, fluid-filled media, with application to cartilage. J. Chem. Phys. 145, 234703 (2016)

    Article  Google Scholar 

  27. Persson, B.N.J., Kovalev, A., Gorb, S.N.: Simple contact mechanics model of the vertebrate cartilage. Soft Matter 13(37), 6349–6362 (2017)

    Article  Google Scholar 

  28. Persson, B.N.J.: Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 22, 265004 (2010)

    Article  Google Scholar 

  29. Persson, B.N.J.: Theory of rubber friction and contact mechanics. The J. Chem. Phys. 115, 3840 (2001)

    Article  Google Scholar 

  30. Almqvist, A., Campana, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355 (2011)

    Article  Google Scholar 

  31. Müser, Martin H., Dapp, Wolf B., Bugnicourt, Romain, Sainsot, Philippe, Lesaffre, Nicolas, Lubrecht, Ton A., Persson, Bo N.J., Harris, Kathryn, Bennett, Alexander, Schulze, Kyle, Rohde, Sean, Ifju, Peter, Sawyer, W.Gregory, Angelini, Thomas, Esfahani, Hossein Ashtari, Kadkhodaei, Mahmoud, Akbarzadeh, Saleh, Wu, Jiunn-Jong, Vorlaufer, Georg, Vernes, Andrs, Solhjoo, Soheil, Vakis, Antonis I., Jackson, Robert L., Xu, Yang, Streator, Jeffrey, Rostami, Amir, Dini, Daniele, Medina, Simon, Carbone, Giuseppe, Bottiglione, Francesco, Afferrante, Luciano, Monti, Joseph, Pastewka, Lars, Robbins, Mark O., Greenwood, James A.: Meeting the contact-mechanics challenge. Tribol. Lett. 65, 118 (2017)

    Article  Google Scholar 

  32. Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413 (2007)

    Article  Google Scholar 

  33. Prodanov, N., Dapp, W.B., Müser, M.H.: On the contact area and mean gap of rough, elastic contacts: dimensional analysis, numerical corrections, and reference data. Tribol. Lett. 53, 433 (2013)

    Article  Google Scholar 

  34. Scaraggi, M., Carbone, G., Persson, B.N.J., Dini, D.: Lubrication in soft rough contacts: a novel homogenized approach. Part I- Theory, Soft Matter 7(21), 10395–10406 (2011)

    Article  Google Scholar 

  35. Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244301 (2012)

    Article  Google Scholar 

  36. Israelachvili, J.N.: Intermolecular and Surface Forces, Third edn. Elsevier, Amsterdam (2011)

    Google Scholar 

  37. See, e.g., Abaza, M.M.I.: Streaming Current and Streaming Potential Induced by Water Flow Through Porous Media, Utah State University, All Graduate Thesis and Dissertations. Paper 1628 (1966)

  38. Sugiharto, Silas, Lewis, Trevor M., Moorhouse, Andrew J., Schofield, Peter R., Barry, Peter H.: Anion-cation permeability correlates with hydrated counterion size in glycine receptor channels. Biophys. J. 95, 4698 (2008)

    Article  Google Scholar 

  39. Lorenz, B., Oh, Y.R., Nam, S.K., Jeon, S.H., Persson, B.N.J.: Rubber friction on road surfaces: experiment and theory for low sliding speeds. J. Chem. Phys. 142, 194701 (2015)

    Article  Google Scholar 

  40. Persson, B.N.J., Lorenz, B., Shimizu, M., Koishi, M.: Multiscale Contact mechanics with application to seals and rubber friction on dry and lubricated surfaces. In: Stöckelhuber, K., Das, A., Klüppel, M. (eds.) Designing of Elastomer Nanocomposites: From Theory to Applications. Advances in Polymer Science, pp. 103–156. Springer, Berlin (2016)

    Chapter  Google Scholar 

  41. Chan, S.M.T., Neu, C.P., Komvopoulos, K., Reddi, A.H.: The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage. J. Biomech. 44, 2015 (2001)

    Article  Google Scholar 

  42. Lewis, P.R., McCutchen, C.W.: Experimental evidence for weeping lubrication in mammalian joints. Nature 184, 1285 (1959)

    Article  Google Scholar 

  43. McCutchen, C.W.: The frictional properties of animal joints. Wear 5, 1 (1962)

    Article  Google Scholar 

  44. Roberts, A.D., Tabor, D.: Proc. R. Soc. A 325, 323 (1971)

    Article  Google Scholar 

  45. Roberts, A.D.: The Physics of Tire Friction: Theory and Experiment. In: D.F. Hays and A.L. Browne (eda) New York: Plenum (1974)

  46. Richards, S.C., Roberts, A.D.: J. Nat. Rubber Res. 3, 210 (1988)

    Google Scholar 

  47. Nanjundiah, K., Hsu, P.Y., Dhinojwala, A.: Understanding rubber friction in the presence of water using sum-frequency generation spectroscopy. J. Chem. Phys. 130, 024702 (2009)

    Article  Google Scholar 

  48. Nanjundiah, K., Dhinojwala, A.: Confinement-induced ordering of alkanes between an elastomer and a solid surface. Phys. Rev. Lett. 95, 154301 (2005)

    Article  Google Scholar 

  49. Behrens, Sven H., Grier, David G.: The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed within a Reinhart-Koselleck project funded by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank DFG for the project support under the reference German Research Foundation DFG-Grant: MU 1225/36-1, as well as the Cost Action CA15216 for the STSM Grant STSM-CA15216-37369. The research work was also supported by the DFG-Grant: PE 807/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persson, B.N.J., Scaraggi, M. Some Comments on Hydrogel and Cartilage Contact Mechanics and Friction. Tribol Lett 66, 23 (2018). https://doi.org/10.1007/s11249-017-0973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0973-y

Keywords

Navigation