Tribology Letters

, 66:17 | Cite as

Investigation of Lubricant Transfer and Lubricant Fragmentation in a Hard Disk Drive

  • Young Woo Seo
  • Andreas Rosenkranz
  • Frank E. Talke
Original Paper
  • 35 Downloads

Abstract

Lubricant transfer is investigated versus temperature, local pressure change and disk velocity considering lubricant fragmentation for four different types of perfluoropolyether. Lubricant transfer and lubricant fragmentation are found to increase with temperature, local pressure change and velocity of the moving disk. The local pressure change is observed to be the most important parameter accelerating lubricant fragmentation.

Keywords

Head–disk interface PFPE Lubricant fragmentation Lubricant transfer Molecular dynamics 

Notes

Acknowledgements

Andreas Rosenkranz acknowledges the Feodor Lynen Fellowship of the Alexander von Humboldt foundation and support from Prof. Talkie’s tribology funds. We also would like to express our gratitude to Karcher Morris for helpful discussions.

References

  1. 1.
    Ambekar, R.P., Bogy, D.B., Bhatia, C.S.: Lubricant depletion and disk-to-head lubricant transfer at the head–disk interface in hard disk drives. J. Tribol. 131(3), 031901 (2009)CrossRefGoogle Scholar
  2. 2.
    Deoras, S.K., Talke, F.E.: Slider–lubricant interactions for low flying sliders. IEEE Trans. Magn. 39(5), 2471–2473 (2003)CrossRefGoogle Scholar
  3. 3.
    Canchi, S.V., Bogy, D.B.: Experiments on slider–lubricant interactions and lubricant transfer using TFC sliders. Microsyst. Technol. 18(9–10), 1517–1523 (2012)CrossRefGoogle Scholar
  4. 4.
    Ma, Y., Liu, B.: Lubricant transfer from disk to slider in hard disk drives. Appl. Phys. Lett. 90(14), 143516 (2007)CrossRefGoogle Scholar
  5. 5.
    Pan, D., Ovcharenko, A., Tangaraj, R., Yang, M., Talke, F.E.: Investigation of lubricant transfer between slider and disk using molecular dynamics simulation. Tribol. Lett. 53(1), 373–381 (2014)CrossRefGoogle Scholar
  6. 6.
    Seo, Y.W., Pan, D., Ovcharenko, A., Yang, M., Talke, F.E.: Molecular dynamics simulation of lubricant transfer at the head–disk interface. IEEE Trans. Magn. 50(11), 1–4 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, C.Y., Fong, W., Bogy, D.B., Bhatia, C.S.: Lubricant thickness effect on tribological performance of ZDOL lubricated disks with hydrogenated overcoats. Tribol. Lett. 7(1), 1–10 (1999)CrossRefGoogle Scholar
  8. 8.
    Bogy, D.B., Bhatia, C.S.: The fragmentation mechanisms and thermal stability of ZDOL lubricant on hydrogenated carbon overcoats. Technical Briefs, p. 458 (2000)Google Scholar
  9. 9.
    Zhao, X., Bhushan, B., Kajdas, C.: Lubrication studies of head–disk interfaces in a controlled environment Part 2: degradation mechanisms of perfluoropolyether lubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 214(6), 547–559 (2000)CrossRefGoogle Scholar
  10. 10.
    Tao, Z., Bhushan, B.: Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants. Wear 259(7), 1352–1361 (2005)CrossRefGoogle Scholar
  11. 11.
    Deb Nath, S.K., Wong, C.H.: Study of the thermal decomposition of PFPEs lubricants on a thin DLC film using finitely extensible nonlinear elastic potential based molecular dynamics simulation. J. Nanotechnol. 2014, 390834 (2014). https://doi.org/10.1155/2014/390834 Google Scholar
  12. 12.
    Pan, D., Ovcharenko, A., Peng, J.P., Jiang, H.: Effect of lubricant fragments on lubricant transfer: a molecular dynamics simulation. IEEE Trans. Magn. 50(9), 1–5 (2014)CrossRefGoogle Scholar
  13. 13.
    Jhon, M.S., Chung, P.S., Smith, R.L., Biegler, L.T.: A description of multiscale modeling for the head-disk interface focusing on bottom-level lubricant and carbon overcoat models. Adv. Tribol. 2013, 794151 (2013). https://doi.org/10.1155/2013/794151 Google Scholar
  14. 14.
    Weaver, J.F., Carlsson, A.F., Madix, R.J.: The adsorption and reaction of low molecular weight alkanes on metallic single crystal surfaces. Surf. Sci. Rep. 50(4), 107–199 (2003)CrossRefGoogle Scholar
  15. 15.
    Sexton, B.A., Hughes, A.E., Avery, N.R.: A spectroscopic study of the adsorption and reactions of methanol, formaldehyde and methyl formate on clean and oxygenated Cu (110) surfaces. Surf. Sci. 155(1), 366–386 (1985)CrossRefGoogle Scholar
  16. 16.
    Stevens, M.J.: Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 34(8), 2710–2718 (2001)CrossRefGoogle Scholar
  17. 17.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). http://lammps.sandia.gov/index.html
  18. 18.
    Marchon, B.: Lubricant design attributes for subnanometer head–disk clearance. IEEE Trans. Magn. 45(2), 872–876 (2009)CrossRefGoogle Scholar
  19. 19.
    Li, N., Meng, Y., Bogy, D.B.: Effects of PFPE lubricant properties on the critical clearance and rate of the lubricant transfer from disk surface to slider. Tribol. Lett. 43(3), 275–286 (2011)CrossRefGoogle Scholar
  20. 20.
    Guo, X.C., Knigge, B., Marchon, B., Waltman, R.J., Carter, M., Burns, J.: Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100(4), 044306 (2006)CrossRefGoogle Scholar
  21. 21.
    Sonoda, K., Shirakawa, D., Yamamoto, T., Itoh, J.: The tribological properties of the new structure lubricant at the head–disk interface. IEEE Trans. Magn. 43(6), 2250–2252 (2007)CrossRefGoogle Scholar
  22. 22.
    Shirakawa, D., Sonoda, K., Ohnishi, K.: A study on design and synthesis of new lubricant for near contact recording. IEEE Trans. Magn. 43(6), 2253–2255 (2007)CrossRefGoogle Scholar
  23. 23.
    Fukui, S., Kaneko, R.: Analysis of ultra-thin gas film lubrication based on the linearized Boltzmann equation: influence of accommodation coefficient. JSME Int. J. 30(268), 1660–1666 (1987)CrossRefGoogle Scholar
  24. 24.
    Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Springer, Berlin (2007)CrossRefGoogle Scholar
  25. 25.
    Liu, N., Bogy, D.B.: Air-bearing shear force in the head–disk interface of hard disk. Tribol. Lett. 35(2), 121–125 (2009)CrossRefGoogle Scholar
  26. 26.
    Wei, J., Fong, W., Bogy, D.B., Bhatia, C.S.: The decomposition mechanisms of a perfluoropolyether at the head/disk interface of hard disk drives. Tribol. Lett. 5(2), 203–209 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Young Woo Seo
    • 1
  • Andreas Rosenkranz
    • 1
  • Frank E. Talke
    • 1
  1. 1.Center for Memory and Recording ResearchUC San DiegoLa JollaUSA

Personalised recommendations