Skip to main content
Log in

Thickening Mechanisms of Polyisobutylene in Polyalphaolefin

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are used to study the effect of polyisobutylene polymer on the viscosity of polyalphaolefin base oil. The Newtonian viscosities of the solution calculated from simulations at 40 and 100 °C agree with rheometer measurements. The simulations are used to investigate three possible mechanisms by which the polymer may increase solution viscosity. The results indicate that neither (1) coil expansion nor (2) polymer–polymer association underlie viscosity enhancement in the case studied here. Measurements of solvent reorientation close to the additive molecule suggest that (3) modification of the solvent by the additive molecule contributes to viscosity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Canter, N.: Viscosity index improvers. Tribol. Lubr. Technol. 67(9), 10–22 (2011)

    Google Scholar 

  2. Ghosh, P., Das, M.: Study of the influence of some polymeric additives as viscosity index improvers and pour point depressants synthesis and characterization. J. Pet. Sci. Eng. 119, 79–84 (2014)

    Article  Google Scholar 

  3. Nassar, A.M.: Synthesis and evaluation of viscosity index improvers and pour point depressant for lube oil. Pet. Sci. Technol. 26(8), 523–531 (2008)

    Article  Google Scholar 

  4. Stöhr, T., Eisenberg, B., Müller, M.: A new generation of high performance viscosity modifiers based on comb polymers. SAE Int. J. Fuels Lubr. 1(1), 1511–1516 (2008)

    Article  Google Scholar 

  5. Selby, T.W.: The non-newtonian characteristics of lubricating oils. ASLE Trans. 1(1), 68–81 (1958)

    Article  Google Scholar 

  6. de Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(2), 572–579 (1971)

    Article  Google Scholar 

  7. Ferry, J.D.: Viscoelastic properties of polymer solutions. J. Res. Natl. Bur. Stand. 41(1), 53–61 (1948)

    Article  Google Scholar 

  8. Schulz, D.N., Glass, J.E.: Polymers as Rheology Modifiers. American Chemical Society, Washington, DC (1991)

    Book  Google Scholar 

  9. Longworth, R., Morawetz, H.: Polymer association. IV. Hydrogen bonding and melt viscosities in copolymers of styrene with methacrylic acid. J. Polym. Sci. 29(119), 307–319 (1958)

    Article  Google Scholar 

  10. Yekta, A., Xu, B., Duhamel, J., Adiwidjaja, H., Winnik, M.A.: Fluorescence studies of associating polymers in water: determination of the chain end aggregation number and a model for the association process. Macromolecules 28(4), 956–966 (1995)

    Article  Google Scholar 

  11. Rouse Jr., P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7), 1272–1280 (1953)

    Article  Google Scholar 

  12. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  Google Scholar 

  13. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  14. Siu, S.W.I., Pluhackova, K., Böckmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8(4), 1459–1470 (2012)

    Article  Google Scholar 

  15. Ye, X., Cui, S., de Almeida, Valmor F., Khomami, B., Khomami, B.: Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain n-alkanes with the OPLS-AA model. J. Mol. Model. 19(3), 1251–1258 (2013)

    Article  Google Scholar 

  16. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984)

    Article  Google Scholar 

  17. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  Google Scholar 

  18. Kelkar, M.S., Rafferty, J.L., Maginn, E.J., Siepmann, J.I.: Prediction of viscosities and vapor–liquid equilibria for five polyhydric alcohols by molecular simulation. Fluid Phase Equilib. 260, 218–231 (2007)

    Article  Google Scholar 

  19. Müller-Plathe, F.: Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys. Rev. E 59, 4894–4898 (1999)

    Article  Google Scholar 

  20. Tenney, C.M., Maginn, E.J.: Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J. Chem. Phys. 132(1), 014103 (2010)

    Article  Google Scholar 

  21. Ramasamy, U.S., Len, M., Martini, A.: Correlating molecular structure to the behavior of linear styrene–butadiene viscosity modifiers. Tribol. Lett. 65(4), 147 (2017)

    Article  Google Scholar 

  22. Bhattacharya, P., Ramasamy, U.S., Krueger, S., Robinson, J.W., Tarasevich, B.J., Martini, A., Cosimbescu, L.: Trends in thermoresponsive behavior of lipophilic polymers. Ind. Eng. Chem. Res. 55(51), 12983–12990 (2016)

    Article  Google Scholar 

  23. Covitch, M.J., Trickett, K.J.: How polymers behave as viscosity index improvers in lubricating oils. Adv. Chem. Eng. Sci. 5(2), 134–151 (2015)

    Article  Google Scholar 

  24. Ramasamy, U.S., Lichter, S., Martini, A.: Effect of molecular-scale features on the polymer coil size of model viscosity index improvers. Tribol. Lett. 62(23), 1–7 (2016)

    Google Scholar 

  25. Jacobs, T.B.D., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 061101 (2017)

    Google Scholar 

  26. Allen, W., Rowley, R.L.: Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: evaluation of intermolecular potential models. J. Chem. Phys. 106(24), 10273–10281 (1997)

    Article  Google Scholar 

  27. Ewen, J.P., Gattinoni, C., Thakkar, F.M., Morgan, N., Spikes, H.A., Dini, D.: A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9(8), 651 (2016)

    Article  Google Scholar 

  28. Cusseau, P., Bouscharain, N., Martinie, L., Philippon, D., Vergne, P., Briand, F.: Rheological considerations on polymer-based engine lubricants: viscosity index improvers versus thickeners—generalized Newtonian models. Tribol. Trans. (2017). https://doi.org/10.1080/10402004.2017.1346154

  29. Singh, H., Gulati, I.B.: Influence of base oil refining on the performance of viscosity index improvers. Wear 118(1), 33–56 (1987)

    Article  Google Scholar 

  30. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  31. Grosberg, A.Y., Kuznetsov, D.V.: Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration. Macromolecules 25(7), 1970–1979 (1992)

    Article  Google Scholar 

  32. Mazur, J., McIntyre, D.: The determination of chain statistical parameters by light scattering measurements. Macromolecules 8(4), 464–476 (1975)

    Article  Google Scholar 

  33. Mary, C., Phillipon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52, 357–369 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank David Gray, Joan Souchik and Paul Michael for useful discussion and feedback related to viscosity modifiers. We also acknowledge the Donors of the American Chemical Society Petroleum Research Fund (Grant #55026-ND6), National Science Foundation Engineering Research Center for Compact and Efficient Fluid Power EEC 05440834, and the National Fluid Power Association Education and Technology Foundations Pascal Society for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Len, M., Ramasamy, U.S., Lichter, S. et al. Thickening Mechanisms of Polyisobutylene in Polyalphaolefin. Tribol Lett 66, 5 (2018). https://doi.org/10.1007/s11249-017-0960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0960-3

Keywords

Navigation