Tribology Letters

, 66:15 | Cite as

Effects of Surface Roughness on the Kinetic Friction of SiC Nanowires on SiN Substrates

Original Paper

Abstract

The effects of surface roughness on the kinetic friction between SiC nanowires and SiN substrates were investigated by use of experimental testing and numerical modelling. The experimental measurements showed that the shear stress, or the frictional force per unit projected contact area, was significantly affected by the substrate roughness, decreased from 0.38 to 0.02 MPa for the increase in roughness from 0.5 to 23 nm. A power-law relationship between frictional stress and surface roughness was found. The numerical modelling based on the lowest energy principle and the Monte Carlo method revealed that the substrate effect was through the variation in the number of contact asperities between a nanowire and a substrate, which was much fewer on a rougher surface. The real contact area also exhibited a power-law dependence on the substrate roughness. The frictional forces normalized using the real contact areas obtained from the simulation were reasonably consistent, varying from 127 to 166 MPa for the five substrates of different roughnesses.

Keywords

Nanowire Kinetic friction Roughness Contact area 

Notes

Acknowledgements

This study was funded by the Australian Research Council (ARC) under the Discovery Project program (DP160103190). The authors would like to acknowledge the Australian National Fabrication facility (Queensland Node) for AFM characterization.

Supplementary material

11249_2017_956_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
11249_2017_956_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb)

References

  1. 1.
    Kim, H.-J., Nguyen, G.H., Ky, D.L.C., Tran, D.K., Jeon, K.-J., Chung, K.-H.: Static and kinetic friction characteristics of nanowire on different substrates. Appl. Surf. Sci. 379, 452–461 (2016)CrossRefGoogle Scholar
  2. 2.
    Kim, H.-J., Kang, K.H., Kim, D.-E.: Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5, 6081 (2013)CrossRefGoogle Scholar
  3. 3.
    Sergei, V., Boris, P., Sven, O., Mikk, V., Mikk, A., Andris, Š., Krisjanis, S., Leonid, M.D., Rünno, L.: Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations. Nanotechnology 27, 335701 (2016)CrossRefGoogle Scholar
  4. 4.
    Wang, S., Hou, L., Xie, H., Huang, H.: The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Appl. Phys. Lett. 107, 103102 (2015)CrossRefGoogle Scholar
  5. 5.
    Xie, H., Wang, S., Huang, H.: Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. J. Mater. Res. 30, 1852–1860 (2015)CrossRefGoogle Scholar
  6. 6.
    Roy, A., Xie, H., Wang, S., Huang, H.: The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates. Appl. Surf. Sci. 389, 797–801 (2016)CrossRefGoogle Scholar
  7. 7.
    Tran, D.K., Chung, K.H.: Simultaneous measurement of elastic properties and friction characteristics of nanowires using atomic force microscopy. Exp. Mech. 55, 903–915 (2015)CrossRefGoogle Scholar
  8. 8.
    Tayebi, N., Polycarpou, A.A.: Adhesion and contact modeling and experiments in microelectromechanical systems including roughness effects. Microsyst. Technol. 12, 854–869 (2006)CrossRefGoogle Scholar
  9. 9.
    Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter 17, R1–R62 (2005)Google Scholar
  10. 10.
    Jacobs, T.D.B., Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., Harrison, J.A., Carpick, R.W.: The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol. Lett. 50, 81–93 (2013)CrossRefGoogle Scholar
  11. 11.
    Çolak, A., Wormeester, H., Zandvliet, H.J.W., Poelsema, B.: Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl. Surf. Sci. 258, 6938–6942 (2012)CrossRefGoogle Scholar
  12. 12.
    Pastewka, L., Robbinsa, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. In: Israelachvili, J.N. (Ed.) Proceedings of the National Academy of Sciences, pp. 3298–3303 (2014)Google Scholar
  13. 13.
    Persson, B.N.J., Scaraggi, M.: Theory of adhesion: Role of surface roughness. J. Chem. Phys. 141, 124701 (2014)CrossRefGoogle Scholar
  14. 14.
    Maugis, D.: On the contact and adhesion of rough surfaces. J. Adhes. Sci. Technol. 10, 161–175 (1996)CrossRefGoogle Scholar
  15. 15.
    Conache, G., Gray, S., Ribayrol, A., Fröberg, L.E., Samuelson, L., Pettersson, H., Montelius, L.: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5, 203–207 (2009)CrossRefGoogle Scholar
  16. 16.
    Dorogin, L.M., Vlassov, S., Polyakov, B., Antsov, M., Lõhmus, R., Kink, I., Romanov, A.E.: Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys. Status Solidi. B 250, 305–317 (2013)CrossRefGoogle Scholar
  17. 17.
    Bordag, M., Ribayrol, A., Conache, G., Fröberg, L.E., Gray, S., Samuelson, L., Montelius, L., Pettersson, H.: Shear stress measurements on InAs nanowires by AFM manipulation. Small 3, 1398–1401 (2007)CrossRefGoogle Scholar
  18. 18.
    Chai, Z., Liu, Y., Lu, X., He, D.: Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness. ACS Appl. Mater. Interfaces 6, 3325–3330 (2014)CrossRefGoogle Scholar
  19. 19.
    DelRio, F.W., de Boer, M.P., Knapp, J.A., David Reedy, E., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)CrossRefGoogle Scholar
  20. 20.
    Rana, A., Patra, A., Annamalai, M., Srivastava, A., Ghosh, S., Stoerzinger, K., Lee, Y.-L., Prakash, S., Jueyuan, R.Y., Goohpattader, P.S.: Correlation of nanoscale behaviour of forces and macroscale surface wettability. Nanoscale 8, 15597–15603 (2016)CrossRefGoogle Scholar
  21. 21.
    Si, L., Wang, X., Xie, G., Sun, N.: Nano adhesion and friction of multi asperity contact: a molecular dynamics simulation study. Surf. Interf. Anal. 47, 919–925 (2015)CrossRefGoogle Scholar
  22. 22.
    Gao, W., Huang, R.: Effect of surface roughness on adhesion of graphene membranes. J. Phys. D Appl. Phys. 44, 452001 (2011)CrossRefGoogle Scholar
  23. 23.
    Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013)CrossRefGoogle Scholar
  24. 24.
    Xu, J., Shingaya, Y., Zhao, Y., Nakayama, T.: In situ, controlled and reproducible attachment of carbon nanotubes onto conductive AFM tips. Appl. Surf. Sci. 335, 11–16 (2015)CrossRefGoogle Scholar
  25. 25.
    Kim, K., Xu, X., Guo, J., Fan, D.L.: Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 18441 (2014)Google Scholar
  26. 26.
    Conache, G., Ribayrol, A., Fröberg, L.E., Borgström, M.T., Samuelson, L., Montelius, L., Pettersson, H., Gray, S.M.: Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. Phys. Rev. B 82, 035403 (2010)CrossRefGoogle Scholar
  27. 27.
    Polyakov, B., Vlassov, S., Dorogin, L.M., Kulis, P., Kink, I., Lohmus, R.: The effect of substrate roughness on the static friction of CuO nanowires. Surf. Sci. 606, 1393–1399 (2012)CrossRefGoogle Scholar
  28. 28.
    Dorogin, L.M., Polyakov, B., Petruhins, A., Vlassov, S., Lõhmus, R., Kink, I., Romanov, A.E.: Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J. Mater. Res. 27, 580–585 (2011)CrossRefGoogle Scholar
  29. 29.
    Xie, H., Wang, S., Huang, H.: Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology 27, 065709 (2016)CrossRefGoogle Scholar
  30. 30.
    Strus, M.C., Lahiji, R.R., Ares, P., López, V., Raman, A., Reifenberger, R.: Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy. Nanotechnology 20, 385709 (2009)CrossRefGoogle Scholar
  31. 31.
    Qin, Q., Zhu, Y.: Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5, 7404–7410 (2011)CrossRefGoogle Scholar
  32. 32.
    Xie, H., Mead, J., Wang, S., Huang, H.: The effect of surface texture on the kinetic friction of a nanowire on a substrate. Scientific report 7, 44907 (2016)CrossRefGoogle Scholar
  33. 33.
    Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)Google Scholar
  34. 34.
    Wang, S., Wu, Y., Lin, L., He, Y., Huang, H.: Fracture strain of SiC nanowires and direct evidence of electron-beam induced amorphisation in the strained nanowires. Small 11, 1672–1676 (2015)CrossRefGoogle Scholar
  35. 35.
    Wang, S., He, Y., Huang, H., Zou, J., Auchterlonie, G.J., Hou, L., Huang, B.: An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. Nanotechnology 24, 285703 (2013)CrossRefGoogle Scholar
  36. 36.
    Wang, S., Chen, G., Huang, H., Ma, S., Xu, H., He, Y., Zou, J.: Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. Nanotechnology 24, 505705 (2013)CrossRefGoogle Scholar
  37. 37.
    Polyakov, B., Dorogin, L.M., Lohmus, A., Romanov, A.E., Lohmus, R.: In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl. Surf. Sci. 258, 3227–3231 (2012)CrossRefGoogle Scholar
  38. 38.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRefGoogle Scholar
  39. 39.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 295, 300–319 (1966)CrossRefGoogle Scholar
  40. 40.
    Ford, I.J.: Roughness effect on friction for multi-asperity contact between surfaces. J. Phys. D Appl. Phys. 26, 2219–2225 (1993)CrossRefGoogle Scholar
  41. 41.
    Ogilvy, J.A.: Numerical simulation of friction between contacting rough surfaces. J. Appl. Phys. 24, 2019–2096 (1991)Google Scholar
  42. 42.
    Bergström, L.: Hamaker constants of inorganic materials. Adv. Coll. Interface. Sci. 70, 125–169 (1997)CrossRefGoogle Scholar
  43. 43.
    Kim, D., Grobelny, J., Pradeep, N., Cook, R.: Origin of adhesion in humid air. Langmuir 24, 1873–1877 (2008)CrossRefGoogle Scholar
  44. 44.
    Popov, P.D.V.L.: In: Popov, P.D.V.L. (ed.) Contact Mechanics and Friction. Institute of Mechanics, Berlin University of Technology, Berlin (2010)CrossRefGoogle Scholar
  45. 45.
    de Boer, M.P., Michalske, T.A.: Accurate method for determining adhesion of cantilever beams. J. Appl. Phys. 86, 817 (1999)CrossRefGoogle Scholar
  46. 46.
    Robert, C.P.: Monte Carlo Methods. Wiley Online Library, Hoboken (2004)Google Scholar
  47. 47.
    Xu, D., Ravi-Chandar, K., Liechti, K.M.: On scale dependence in friction: transition from intimate to monolayer-lubricated contact. J. Colloid Interface Sci. 318, 507–519 (2008)CrossRefGoogle Scholar
  48. 48.
    Daly, M., Cao, C., Sun, H., Sun, Y., Filleter, T., Singh, C.V.: Interfacial shear strength of multilayer graphene oxide films. ACS Nano 10, 1939–1947 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mechanical and Mining EngineeringUniversity of QueenslandSt Lucia, BrisbaneAustralia

Personalised recommendations