Tribology Letters

, 65:148 | Cite as

An Integrated Force Probe and Quartz Crystal Microbalance for High-Speed Microtribology

  • Brian P. Borovsky
  • Christopher Bouxsein
  • Cullen O’Neill
  • Lucas R. Sletten
Methods

Abstract

We have developed a technique for measuring frictional forces and contact areas, over a wide range of applied loads, at microscopic contacts reaching high sliding speeds near 1 m/s. Our approach is based on integrating two stand-alone methods: nanoindentation and quartz crystal microbalance (QCM). Energy dissipation and lateral contact stiffness are monitored by a transverse shear quartz resonator, while a spherical indenter probe is loaded onto its surface. Variations in these two quantities as functions of shear amplitude, with the normal load held fixed, reveal a transition from partial to full slip at a critical amplitude. Average values of both the threshold force for full slip and the kinetic friction during sliding are determined from these trends, and the contact area is inferred from the lateral stiffness at low shear amplitudes. Measurements are performed at loads ranging from 5 µN to 8 mN using an electrostatically actuated indenter probe. For the materials chosen in this study, we find that the full slip threshold force is about a factor of two larger than kinetic friction. The forces increase sublinearly with load in close correspondence with the contact area, and the shear strengths are found to be relatively insensitive to pressure. The threshold shear amplitude scales in proportion to the contact radius. These results demonstrate that the probe–QCM technique is a versatile and full-featured platform for microtribology in the speed range relevant to practical applications.

Keywords

Microtribology Nanoindentation Quartz crystal microbalance Partial slip Microslip Shear strength 

References

  1. 1.
    Achanta, S., Celis, J.P.: Nanotribology of MEMS/NEMS. In: Gnecco, E., Meyer, E. (eds.) Nanoscience and Technology, pp. 631–656. Springer, Berlin (2015)Google Scholar
  2. 2.
    Mate, C.M.: Tribology on the Small Scale. Oxford University Press, New York (2008)Google Scholar
  3. 3.
    Bhushan, B.: Springer Handbook of Nanotechnology. Springer, Berlin (2010)CrossRefGoogle Scholar
  4. 4.
    Romig, A.D., Dugger, M.T., McWhorter, P.J.: Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837 (2003)CrossRefGoogle Scholar
  5. 5.
    Stoyanov, P., Chromik, R.R.: Scaling effects on materials tribology: from macro to micro scale. Materials 10, 550 (2017)CrossRefGoogle Scholar
  6. 6.
    Park, J.Y., Salmeron, M.: Fundamental aspects of energy dissipation in friction. Chem. Rev. 114, 677–711 (2014)CrossRefGoogle Scholar
  7. 7.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001 (2008)CrossRefGoogle Scholar
  8. 8.
    Liu, X.Z., Ye, Z.J., Dong, Y.L., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)CrossRefGoogle Scholar
  9. 9.
    King, W.H.: Piezoelectric sorption detector. Anal. Chem. 36, 1735 (1964)CrossRefGoogle Scholar
  10. 10.
    Lu, C., Czanderna, A.W. (eds.): Applications of Piezoelectric Quartz Crystal Microbalances. Elsevier, New York (1984)Google Scholar
  11. 11.
    Johannsmann, D.: Quartz Crystal Microbalance in Soft Matter Research: Fundamentals and Modeling. Springer, Cham (2015)CrossRefGoogle Scholar
  12. 12.
    Johannsmann, D.: Studies of contact mechanics with the QCM. In: Steinem, C., Janshoff, A. (eds.) Springer Ser Chem Se, pp. 151–170. Springer, Berlin (2007)Google Scholar
  13. 13.
    Krim, J., Widom, A.: Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys. Rev. B 38, 12184–12189 (1988)CrossRefGoogle Scholar
  14. 14.
    Krim, J., Solina, D.H., Chiarello, R.: Nanotribology of a Kr Monolayer—a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181–184 (1991)CrossRefGoogle Scholar
  15. 15.
    Daly, C., Krim, J.: Sliding friction of solid xenon monolayers and bilayers on Ag(111). Phys. Rev. Lett. 76, 803–806 (1996)CrossRefGoogle Scholar
  16. 16.
    Dybwad, G.L.: A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J. Appl. Phys. 58, 2789–2790 (1985)CrossRefGoogle Scholar
  17. 17.
    Krim, J., Dayo, A., Daly, C.: Combined scanning tunneling microscope and quartz microbalance study of molecularly thin water layers. In: Cohen, S.H., Bray, M.T. (eds.) Atomic Force Microscopy/Scanning Tunneling Microscopy, pp. 211–215. Springer, New York (1994)CrossRefGoogle Scholar
  18. 18.
    Sasaki, A., Katsumata, A., Iwata, F., Aoyama, H.: Scanning shearing-stress microscope. Appl. Phys. Lett. 64, 124–125 (1994)CrossRefGoogle Scholar
  19. 19.
    Yamada, R., Ye, S., Uosaki, K.: Novel scanning probe microscope for local elasticity measurement. Jpn. J. Appl. Phys. 2(35), L846–L848 (1996)CrossRefGoogle Scholar
  20. 20.
    Kim, J.M., Chang, S.M., Muramatsu, H.: Scanning localized viscoelastic image using a quartz crystal resonator combined with an atomic force microscopy. Appl. Phys. Lett. 74, 466–468 (1999)CrossRefGoogle Scholar
  21. 21.
    Laschitsch, A., Johannsmann, D.: High frequency tribological investigations on quartz resonator surfaces. J. Appl. Phys. 85, 3759–3765 (1999)CrossRefGoogle Scholar
  22. 22.
    Flanigan, C.M., Desai, M., Shull, K.R.: Contact mechanics studies with the quartz crystal microbalance. Langmuir 16, 9825–9829 (2000)CrossRefGoogle Scholar
  23. 23.
    Borovsky, B., Krim, J., Syed Asif, S., Wahl, K.: Measuring nanomechanical properties of dynamic contact using an indenter probe and quartz crystal microbalance. J. Appl. Phys. 90, 6391–6396 (2001)CrossRefGoogle Scholar
  24. 24.
    Laschitsch, A., Bailey, L.E., Tyndall, G.W., Frank, C.W., Johannsmann, D.: Frictional properties of perfluoropolyether monolayers investigated with quartz resonators. Appl. Phys. Lett. 78, 2601–2603 (2001)CrossRefGoogle Scholar
  25. 25.
    Dawson, B.D., Lee, S.M., Krim, J.: Tribo-induced melting transition at a sliding asperity contact. Phys. Rev. Lett. 103, 205502 (2009)CrossRefGoogle Scholar
  26. 26.
    Berg, S., Ruths, M., Johannsmann, D.: High-frequency measurements of interfacial friction using quartz crystal resonators integrated into a surface forces apparatus. Phys. Rev. E 65, 026119 (2002)CrossRefGoogle Scholar
  27. 27.
    Berg, S., Johannsmann, D.: High speed microtribology with quartz crystal resonators. Phys. Rev. Lett. 91, 145505 (2003)CrossRefGoogle Scholar
  28. 28.
    Borovsky, B., Booth, A., Manlove, E.: Observation of microslip dynamics at high-speed microcontacts. Appl. Phys. Lett. 91, 114101 (2007)CrossRefGoogle Scholar
  29. 29.
    Leopoldes, J., Jia, X.: Transverse shear oscillator investigation of boundary lubrication in weakly adhered films. Phys. Rev. Lett. 105, 266101 (2010)CrossRefGoogle Scholar
  30. 30.
    Leopoldes, J.L., Conrad, G., Jia, X.: Perturbation of the yield-stress rheology of polymer thin films by nonlinear shear ultrasound. Phys. Rev. E 91, 012405 (2015)CrossRefGoogle Scholar
  31. 31.
    Leopoldes, J., Conrad, G., Jia, X.: Onset of sliding in amorphous films triggered by high-frequency oscillatory shear. Phys. Rev. Lett. 110, 248301 (2013)CrossRefGoogle Scholar
  32. 32.
    Hanke, S., Petri, J., Johannsmann, D.: Partial slip in mesoscale contacts: dependence on contact size. Phys. Rev. E 88, 032408 (2013)CrossRefGoogle Scholar
  33. 33.
    Vlachova, J., Konig, R., Johannsmann, D.: Stiffness of sphere-plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium. Beilstein J. Nanotech. 6, 845–856 (2015)CrossRefGoogle Scholar
  34. 34.
    Inoue, D., Machida, S., Taniguchi, J., Suzuki, M., Ishikawa, M., Miura, K.: Dynamical frictional force of nanoscale sliding. Phys. Rev. B 86, 115411 (2012)CrossRefGoogle Scholar
  35. 35.
    Ikada, Y., Tanahara, S., Oyamada, T., Inoue, D., Machida, S., Taniguchi, J., et al.: Dynamic friction of nanoscale sliding on a C-60 deposited film. E-J. Surf. Sci. Nanotechnol. 13, 135–138 (2015)CrossRefGoogle Scholar
  36. 36.
    Berg, S., Ruths, M., Johannsmann, D.: Quartz crystal resonators with atomically smooth surfaces for use in contact mechanics. Rev. Sci. Instrum. 74, 3845–3852 (2003)CrossRefGoogle Scholar
  37. 37.
    Richter, R.P., Brisson, A.: QCM-D on mica for parallel QCM-D-AFM studies. Langmuir 20, 4609–4613 (2004)CrossRefGoogle Scholar
  38. 38.
    Borovsky, B., Mason, B.L., Krim, J.: Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J. Appl. Phys. 88, 4017–4021 (2000)CrossRefGoogle Scholar
  39. 39.
    Johannsmann, D., Heim, L.O.: A simple equation predicting the amplitude of motion of quartz crystal resonators. J. Appl. Phys. 100, 094505 (2006)CrossRefGoogle Scholar
  40. 40.
    Mak, L.H., Knoll, M., Weiner, D., Gorschluter, A., Schirmeisen, A., Fuchs, H.: Reproducible attachment of micrometer sized particles to atomic force microscopy cantilevers. Rev. Sci. Instrum. 77, 046104 (2006)CrossRefGoogle Scholar
  41. 41.
    Cattaneo, C.: Sul Contatto di due Corpi Elastici: Distribuzione Locale Degli Sforzi. Rendiconti dell’Accademia Nazionale dei Lincei, Series 6, vol. 27, Part I: pp. 342–348, Part II: pp. 434–436, Part III: pp. 474–478 (1938)Google Scholar
  42. 42.
    Mindlin, R.D., Mason, W.P., Osmer, T.F., Deresiewicz, H.: Effects of an oscillating tangential force on the contact surfaces of elastic spheres. J. Appl. Mech. 18, 331 (1951)Google Scholar
  43. 43.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  44. 44.
    Savkoor, A.R.: Dry adhesive friction of elastomers: a study of the fundamental mechanical aspects. Ph.D. dissertation, Delft University of Technology, Netherlands (1987)Google Scholar
  45. 45.
    Mazeran, P.E., Beyaoui, M.: Initiation of sliding of an elastic contact at a nanometer scale under a scanning force microscope probe. Tribol. Lett. 30, 1–11 (2008)CrossRefGoogle Scholar
  46. 46.
    Konig, R., Langhoff, A., Johannsmann, D.: Steady flows above a quartz crystal resonator driven at elevated amplitude. Phys. Rev. E 89, 043016 (2014)CrossRefGoogle Scholar
  47. 47.
    Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)CrossRefGoogle Scholar
  48. 48.
    Piétrement, O., Troyon, M.: Study of the interfacial shear strength pressure dependence by modulated lateral force microscopy. Langmuir 17, 6540–6546 (2001)CrossRefGoogle Scholar
  49. 49.
    Bridgman, P.W.: Shearing phenomena at high pressures, particularly in inorganic compounds. Proc. Am. Acad. Arts Sci. 71, 387–460 (1937)CrossRefGoogle Scholar
  50. 50.
    Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. Ser. A 380, 389–407 (1982)CrossRefGoogle Scholar
  51. 51.
    He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed surface layers. Tribol. Lett. 10, 7–14 (2001)CrossRefGoogle Scholar
  52. 52.
    Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)CrossRefGoogle Scholar
  53. 53.
    Yang, Y., Ruths, M.: Friction of polyaromatic thiol monolayers in adhesive and nonadhesive contacts. Langmuir 25, 12151–12159 (2009)CrossRefGoogle Scholar
  54. 54.
    Yang, Y., Singh, J., Ruths, M.: Friction of aromatic thiol monolayers on silver: SFA and AFM studies of adhesive and non-adhesive contacts. RSC Adv. 4, 18801–18810 (2014)CrossRefGoogle Scholar
  55. 55.
    Schwarz, U.D., Allers, W., Gensterblum, G., Wiesendanger, R.: Low-load friction behaviour of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B 52, 14976–14984 (1995)CrossRefGoogle Scholar
  56. 56.
    Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995–997 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsSt. Olaf CollegeNorthfieldUSA

Personalised recommendations