Skip to main content

Methodology to Characterize Rheology, Surface Forces and Friction of Confined Liquids at the Molecular Scale Using the ATLAS Apparatus

Abstract

We present a methodology that allows one to identify the interfacial properties as a function of confinement. Rheology, viscosity as well as elasticity, in both directions (normal and tangential), and static and dynamic forces can be simultaneously measured in situ for the same set of surfaces/liquid as the confinement increases, from bulk (few μm) to highly confined (down to few 0.1 nm) regimes. The tribological behaviour of confined layers for steady-state and/or transient conditions can also be addressed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Campana, M., Teichert, A., Clarke, S., Steitz, R., Webster, J.R.P., Zarbakhsh, A.: Surfactant adsorption at the metal–oil interface. Langmuir 27(10), 6085–6090 (2011)

    Article  Google Scholar 

  2. 2.

    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; Saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57(2), 1–20 (2015)

    Article  Google Scholar 

  3. 3.

    Doig, M., Warrens, C.P., Camp, P.J.: Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane. Langmuir 30(1), 186–195 (2014)

    Article  Google Scholar 

  4. 4.

    Tabor, D., Winterton, R.H.S.: The direct measurement of normal and retarded van der Waals Forces. Proc. R. Soc. Lond. A 312, 435–450 (1969)

    Article  Google Scholar 

  5. 5.

    Klein, J., Perahia, D., Warburg, S.: Forces between polymer-bearing surfaces undergoing shear. Nature (London) 352, 143–145 (1991)

    Article  Google Scholar 

  6. 6.

    Peachey, J., Van Alsten, J., Granick, S.: Design of an apparatus to measure the shear response of ultrathin liquid films. Rev. Sci. Instrum. 62, 463–473 (1991)

    Article  Google Scholar 

  7. 7.

    Israelachvili, J., et al.: Recent advances in the surface force apparatus (SFA) technique. Rep. Prog. Phys. 73, 036601 (2010)

    Article  Google Scholar 

  8. 8.

    Lundgren, S.M., Ruths, M., Danerlöv, K., Persson, K.: Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J. Colloid Interface Sci. 326(2), 530–536 (2008)

    Article  Google Scholar 

  9. 9.

    Yamada, S., Inomata, K.A., Kobayashi, E., Tanabe, T., Kurihara, K.: Effect of a fatty acid additive on the kinetic friction and stiction of confined liquid lubricants. Tribol. Lett. 64, 23 (2016)

    Article  Google Scholar 

  10. 10.

    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1946 (1987)

    Article  Google Scholar 

  11. 11.

    Yan, X., Perry, S., Spencer, N.D., Pasche, S., De Paul, S.M., Textor, M., Lim, M.S.: Reduction of friction at oxide interfaces upon polymer adsorption from aqueous solutions. Langmuir 20, 423–428 (2004)

    Article  Google Scholar 

  12. 12.

    Fernandez, N., Cayer-Barrioz, J., Isa, L., Spencer, N.D.: Direct, robust technique for the measurement of friction between microspheres. Langmuir 31, 8809–8817 (2015)

    Article  Google Scholar 

  13. 13.

    Tonck, A., Loubet, J.L., Georges, J.M.: French patent 87-11750 (1987)

  14. 14.

    Tonck, A.: Développement d’un appareil de mesure de forces de surface et de nanorhéologie. Ph.D. Thesis, Ecole Centrale de Lyon (1989)

  15. 15.

    Georges, J.M., Millot, S., Loubet, J.L., Tonck, A.: Drainage of thin liquid films between relatively smooth surfaces. J. Chem. Phys. 98(9), 7345–7360 (1993)

    Article  Google Scholar 

  16. 16.

    Dushkin, C.D., Kurihara, K.: A resonance shear force rheometer modelled as simple oscillating circuit. Rev. Sci. Instrum. 69, 2095–2104 (1998)

    Article  Google Scholar 

  17. 17.

    Dhinojwala, A., Granick, S.: New approaches to measure interfacial rheology of confined fluids. J. Chem. Soc. Faraday Trans. 92(4), 619–623 (1996)

    Article  Google Scholar 

  18. 18.

    Israelachvili, J.: Measurement of the viscosity of liquids in very thin films. J. Colloid Interface Sci. 110(1), 263–271 (1986)

    Article  Google Scholar 

  19. 19.

    Georges, E.: Dispersion et forces de surfaces dans les hydrocarbures. Ph.D. Thesis, Ecole Centrale de Lyon (1996)

  20. 20.

    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Elsevier, Amsterdam (2011)

    Google Scholar 

  21. 21.

    Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction dynamics of confined weakly adhering boundary layers. Langmuir 24(8), 3857–3866 (2008)

    Article  Google Scholar 

  22. 22.

    Cayer-Barrioz, J., Mazuyer, D., Tonck, A., Yamaguchi, E.: Frictional rheology of a confined adsorbed polymer layer. Langmuir 25(18), 10802–10810 (2009)

    Article  Google Scholar 

  23. 23.

    Yoshizawa, H., Chen, Y.L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  Google Scholar 

  24. 24.

    Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998)

    Article  Google Scholar 

  25. 25.

    Klein, J.: Shear, friction, and lubrication forces between polymer-bearing surfaces. Ann. Rev. Mater. Sci. 26, 581–612 (1996)

    Article  Google Scholar 

  26. 26.

    Lee, S., Spencer, N.D.: Achieving ultralow friction by aqueous brush-assisted lubrication. In: Erdemir, A., Martin, J.-M. (eds.) Superlubricity, pp. 365–396. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  27. 27.

    Mazuyer, D., Tonck, A., Cayer-Barrioz, J.: Friction control at the molecular level. In: Erdemir, A., Martin, J.-M. (eds.) Superlubricity, pp. 397–426. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  28. 28.

    Tonck, A., Houzé, F., Boyer, L., Loubet, J.L., Georges, J.M.: Electrical and mechanical contact between rough gold surfaces in air. J. Phys. Condens. Matter 3, 5195–5201 (1991)

    Article  Google Scholar 

  29. 29.

    Boyer, L., Houzé, F., Tonck, A., Loubet, J.L., Georges, J.M.: The influence of surface roughness on the capacitance between a sphere and a plane. J. Phys. D Appl. Phys. 27, 1504–1508 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are more than grateful to Serge Zara for technical assistance in electronic and Mickaël Sylvestre for developing new acquisition and processing software, PilotX and ExploiX, under C++. Olivier Haag is also thanked for his help in developing ExploiX. The authors are indebted to Dr. J.-L. Loubet for helpful discussions. Financial support was obtained from the Institut Carnot Ingénierie@Lyon, from the Agence Nationale de la Recherche via the project Confluence ANR-13-JS09-0016-01 and from the LabEx Sise-Manutech via the project Dysco.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Cayer-Barrioz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crespo, A., Mazuyer, D., Morgado, N. et al. Methodology to Characterize Rheology, Surface Forces and Friction of Confined Liquids at the Molecular Scale Using the ATLAS Apparatus. Tribol Lett 65, 138 (2017). https://doi.org/10.1007/s11249-017-0921-x

Download citation

Keywords

  • Dynamics of confined interfaces
  • Friction
  • Monolayers
  • Nanorheology
  • Nanotribology