Advertisement

Tribology Letters

, 65:118 | Cite as

Meeting the Contact-Mechanics Challenge

  • Martin H. Müser
  • Wolf B. Dapp
  • Romain Bugnicourt
  • Philippe Sainsot
  • Nicolas Lesaffre
  • Ton A. Lubrecht
  • Bo N. J. Persson
  • Kathryn Harris
  • Alexander Bennett
  • Kyle Schulze
  • Sean Rohde
  • Peter Ifju
  • W. Gregory Sawyer
  • Thomas Angelini
  • Hossein Ashtari Esfahani
  • Mahmoud Kadkhodaei
  • Saleh Akbarzadeh
  • Jiunn-Jong Wu
  • Georg Vorlaufer
  • András Vernes
  • Soheil Solhjoo
  • Antonis I. Vakis
  • Robert L. Jackson
  • Yang Xu
  • Jeffrey Streator
  • Amir Rostami
  • Daniele Dini
  • Simon Medina
  • Giuseppe Carbone
  • Francesco Bottiglione
  • Luciano Afferrante
  • Joseph Monti
  • Lars Pastewka
  • Mark O. Robbins
  • James A. Greenwood
Original Paper
Part of the following topical collections:
  1. Special Issue: The Contact-Mechanics Challenge

Abstract

This paper summarizes the submissions to a recently announced contact-mechanics modeling challenge. The task was to solve a typical, albeit mathematically fully defined problem on the adhesion between nominally flat surfaces. The surface topography of the rough, rigid substrate, the elastic properties of the indenter, as well as the short-range adhesion between indenter and substrate, were specified so that diverse quantities of interest, e.g., the distribution of interfacial stresses at a given load or the mean gap as a function of load, could be computed and compared to a reference solution. Many different solution strategies were pursued, ranging from traditional asperity-based models via Persson theory and brute-force computational approaches, to real-laboratory experiments and all-atom molecular dynamics simulations of a model, in which the original assignment was scaled down to the atomistic scale. While each submission contained satisfying answers for at least a subset of the posed questions, efficiency, versatility, and accuracy differed between methods, the more precise methods being, in general, computationally more complex. The aim of this paper is to provide both theorists and experimentalists with benchmarks to decide which method is the most appropriate for a particular application and to gauge the errors associated with each one.

Keywords

Contact mechanics Adhesion Modeling Nominally flat surfaces 

Notes

Acknowledgements

MHM thanks Wilfred Tysoe and Nicholas Spencer for indispensible support in the execution and the write-up of the contact-mechanics challenge. MHM and WBD thank the Jülich Supercomputing Centre for computing time on JUQUEEN. The contribution of GV and AV was funded by the Austrian COMET-Program (Project XTribology, No. 849109), and the work was carried out at the “Excellence Centre of Tribology” (AC2T research GmbH). MOR was supported by the NSF through Grant 1411144.

References

  1. 1.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 295(1442), pp. 300–319 (1966)Google Scholar
  2. 2.
    Archard, J.F.: Elastic deformation and the laws of friction. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 243(1233), pp. 190–205 (1957)Google Scholar
  3. 3.
    Whitehouse, D.J., Archard, J.F.: The properties of random surfaces of significance in their contact. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 316(1524), pp. 97–121 (1970)Google Scholar
  4. 4.
    Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRefGoogle Scholar
  5. 5.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115(8), 3840 (2001)CrossRefGoogle Scholar
  6. 6.
    Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70(2), 026117 (2004)CrossRefGoogle Scholar
  7. 7.
    Prodanov, Nikolay, Dapp, Wolf B., Müser, Martin H.: On the contact area and mean gap of rough, elastic contacts: dimensional analysis, numerical corrections, and reference data. Tribol. Lett. 53(2), 433–448 (2013)CrossRefGoogle Scholar
  8. 8.
    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. (EPL) 77(3), 38005 (2007)CrossRefGoogle Scholar
  9. 9.
    Carbone, G., Bottiglione, F.: Asperity contact theories: do they predict linearity between contact area and load? J. Mech. Phys. Solids 56(8), 2555–2572 (2008)CrossRefGoogle Scholar
  10. 10.
    Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H.: Linear elastic contact of the Weierstrass profile. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 456(1994), pp. 387–405 (2000)Google Scholar
  11. 11.
    Paggi, M., Ciavarella, M.: The coefficient of proportionality \(\kappa\) between real contact area and load, with new asperity models. Wear 268(7–8), 1020–1029 (2010)CrossRefGoogle Scholar
  12. 12.
    Greenwood, J.A., Wu, J.J.: Surface roughness: an apology. Meccanica 36(6), 617–630 (2001)CrossRefGoogle Scholar
  13. 13.
    Almqvist, A., Campañá, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59(11), 2355–2369 (2011)CrossRefGoogle Scholar
  14. 14.
    Pastewka, L., Prodanov, N., Lorenz, B., Müser, M.H., Robbins, Mark O., Persson, Bo N.J.: Finite-size scaling in the interfacial stiffness of rough elastic contacts. Phys. Rev. E 87(6), 062809 (2013)CrossRefGoogle Scholar
  15. 15.
    Pohrt, R., Popov, V.L., Filippov, A.E.: Normal contact stiffness of elastic solids with fractal rough surfaces for one- and three-dimensional systems. Phys. Rev. E 86(2), 026710 (2012)CrossRefGoogle Scholar
  16. 16.
    Campañá, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20(35), 354013 (2008)CrossRefGoogle Scholar
  17. 17.
    Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20(31), 312001 (2008)CrossRefGoogle Scholar
  18. 18.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 324(1558), pp. 301–313 (1971)Google Scholar
  19. 19.
    Müser, M.H.: Single-asperity contact mechanics with positive and negative work of adhesion: influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids. Beilstein J. Nanotechnol. 5, 419–437 (2014)CrossRefGoogle Scholar
  20. 20.
    Müser, M.H., Dapp, W.B.: The contact mechanics challenge: problem definition. ArXiv e-prints, December 2015. arXiv:1512.02403
  21. 21.
    Boyce, B.L., Kramer, S.L.B., Fang, H.E., Cordova, T.E., Neilsen, M.K., Dion, K., Kaczmarowski, A.K., Karasz, E., Xue, L., Gross, A.J., Ghahremaninezhad, A., Ravi-Chandar, K., Lin, S.-P., Chi, S.-W., Chen, J.S., Yreux, E., Rüter, M., Qian, D., Zhou, Z., Bhamare, S., O’Connor, D.T., Tang, S., Elkhodary, K.I., Zhao, J., Hochhalter, J.D., Cerrone, A.R., Ingraffea, A.R., Wawrzynek, P.A., Carter, B.J., Emery, J.M., Veilleux, M.G., Yang, P., Gan, Y., Zhang, X., Chen, Z., Madenci, E., Kilic, B., Zhang, T., Fang, E., Liu, P., Lua, J., Nahshon, K., Miraglia, M., Cruce, J., DeFrese, R., Moyer, E.T., Brinckmann, S., Quinkert, L., Pack, K., Luo, M., Wierzbicki, T.: The Sandia fracture challenge: blind round robin predictions of ductile tearing. Int. J. Fract. 186(1–2), 5–68 (2014)CrossRefGoogle Scholar
  22. 22.
    Tysoe, W.T., Spencer, N.D.: Contact-mechanics challenge. Tribol. Lubr. Technol. 71, 96 (2015)Google Scholar
  23. 23.
    Hurst, H.E.: Long-term storage capacity of reservoirs. T. Am. Soc. Civ. Eng. 116, 770–799 (1951)Google Scholar
  24. 24.
    Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear 136(2), 313–327 (1990)CrossRefGoogle Scholar
  25. 25.
    Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett. 54(1), 99–106 (2014)CrossRefGoogle Scholar
  26. 26.
    Maugis, D.: Adhesion of spheres: the JKR–DMT transition using a Dugdale model. J. Colloid Interface Sci. 150(1), 243–269 (1992)CrossRefGoogle Scholar
  27. 27.
    Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. 111(9), 3298–3303 (2014)CrossRefGoogle Scholar
  28. 28.
    Müser, M.H.: A dimensionless measure for adhesion and effects of the range of adhesion in contacts of nominally flat surfaces. Tribol. Int. 100, 41–47 (2016)CrossRefGoogle Scholar
  29. 29.
    Campañá, C., Müser, M.H.: Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74(7), 075420 (2006)CrossRefGoogle Scholar
  30. 30.
    Polonsky, I.A., Keer, L.M.: Fast methods for solving rough contact problems: a comparative study. J. Tribol. 122(1), 36 (2000)CrossRefGoogle Scholar
  31. 31.
    Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol. 119(3), 481 (1997)CrossRefGoogle Scholar
  32. 32.
    Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17(1), R1–R62 (2004)CrossRefGoogle Scholar
  33. 33.
    Yang, C., Persson, B.N.J., Israelachvili, J., Rosenberg, K.: Contact mechanics with adhesion: interfacial separation and contact area. EPL (Europhys. Lett.) 84(4), 46004 (2008)CrossRefGoogle Scholar
  34. 34.
    Persson, B.N.J., Scaraggi, M.: Theory of adhesion: role of surface roughness. J. Chem. Phys. 141(12), 124701 (2014)CrossRefGoogle Scholar
  35. 35.
    Wang, A., Müser, M.H.: Gauging persson theory on adhesion. Tribol. Lett. 65, 103 (2017). doi: 10.1007/s11249-017-0886-9 CrossRefGoogle Scholar
  36. 36.
    Bennett, A.I., Harris, K.L., Sawyer, W.G., Müser, M.H., Angelini, T.: Illuminating pressing problems in soft contacts. Tribol. Lett. (submitted)Google Scholar
  37. 37.
    Jiunn-Jong, Wu: Numerical analyses on elliptical adhesive contact. J. Phys. D Appl. Phys. 39(9), 1899–1907 (2006)CrossRefGoogle Scholar
  38. 38.
    Ilincic, S., Vorlaufer, G., Fotiu, P.A., Vernes, A., Franek, F.: Combined finite element-boundary element method modelling of elastic multi-asperity contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 223(5), 767–776 (2009)CrossRefGoogle Scholar
  39. 39.
    Ilincic, S., Tungkunagorn, N., Vernes, A., Vorlaufer, G., Fotiu, P.A., Franek, F.: Finite and boundary element method contact mechanics on rough, artificial hip joints. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225(11), 1081–1091 (2011)CrossRefGoogle Scholar
  40. 40.
    Ilincic, S., Vernes, A., Vorlaufer, G., Hunger, H., Dorr, N., Franek, F.: Numerical estimation of wear in reciprocating tribological experiments. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227(5), 510–519 (2013)CrossRefGoogle Scholar
  41. 41.
    Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRefGoogle Scholar
  42. 42.
    Sheng, H.W., Kramer, M.J., Cadien, A., Fujita, T., Chen, M.W.: Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83(13), 134118 (2011)CrossRefGoogle Scholar
  43. 43.
    Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. in: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 106(738), pp. 463–477 (1924)Google Scholar
  44. 44.
    Zhen, S., Davies, G.J.: Calculation of the Lennard-Jones n–m potential energy parameters for metals. Phys. Status Solidi (a) 78(2), 595–605 (1983)CrossRefGoogle Scholar
  45. 45.
    Solhjoo, S., Vakis, A.I.: Continuum mechanics at the atomic scale: insights into non-adhesive contacts using molecular dynamics simulations. J. Appl. Phys. 120(21), 215102 (2016)CrossRefGoogle Scholar
  46. 46.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRefGoogle Scholar
  47. 47.
    Michael Brown, W., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011)CrossRefGoogle Scholar
  48. 48.
    Michael Brown, W., Kohlmeyer, A., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers—particle-particle particle-mesh. Comput. Phys. Commun. 183(3), 449–459 (2012)CrossRefGoogle Scholar
  49. 49.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)CrossRefGoogle Scholar
  50. 50.
    Rasband, W.S.: ImageJ. https://imagej.nih.gov/ij/
  51. 51.
    Jackson, R.L., Streator, J.L.: A multi-scale model for contact between rough surfaces. Wear 261(11–12), 1337–1347 (2006)CrossRefGoogle Scholar
  52. 52.
    Rostami, A., Jackson, R.L.: Predictions of the average surface separation and stiffness between contacting elastic and elastic–plastic sinusoidal surfaces. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227(12), 1376–1385 (2013)CrossRefGoogle Scholar
  53. 53.
    Rostami, A., Streator, J.L.: Study of liquid-mediated adhesion between 3d rough surfaces: a spectral approach. Tribol. Int. 84, 36–47 (2015)CrossRefGoogle Scholar
  54. 54.
    Medina, S., Dini, D.: A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int. J. Solids Struct. 51(14), 2620–2632 (2014)CrossRefGoogle Scholar
  55. 55.
    Carbone, G.: A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. J. Mech. Phys. Solids 57(7), 1093–1102 (2009)CrossRefGoogle Scholar
  56. 56.
    Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E 30(1), 65–74 (2009)CrossRefGoogle Scholar
  57. 57.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Solids 60(5), 973–982 (2012)CrossRefGoogle Scholar
  58. 58.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 49(2), 338–343 (2012)CrossRefGoogle Scholar
  59. 59.
    Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear 278–279, 28–33 (2012)CrossRefGoogle Scholar
  60. 60.
    Greenwood, J.A.: Constriction resistance and the real area of contact. Br. J. Appl. Phys. 17(12), 1621–1632 (1966)CrossRefGoogle Scholar
  61. 61.
    Barber, J.R.: Bounds on the electrical resistance between contacting elastic rough bodies. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 459(2029), pp. 53–66 (2003)Google Scholar
  62. 62.
    Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108(24), 244301 (2012)CrossRefGoogle Scholar
  63. 63.
    Campañá, C.: Using Green’s function molecular dynamics to rationalize the success of asperity models when describing the contact between self-affine surfaces. Phys. Rev. E 78(2), 026110 (2008)CrossRefGoogle Scholar
  64. 64.
    Abbott, E.J., Firestone, F.A.: Specifying surface quality: a method based on accurate measurement and comparison. Mech. Eng. 55, 569 (1933)Google Scholar
  65. 65.
    Feng, J.Q.: Adhesive contact of elastically deformable spheres: a computational study of pull-off force and contact radius. J. Colloid Interface Sci. 238(2), 318–323 (2001)CrossRefGoogle Scholar
  66. 66.
    Pastewka, L., Robbins, M.O.: Contact area of rough spheres: large scale simulations and simple scaling laws. Appl. Phys. Lett. 108(22), 221601 (2016)CrossRefGoogle Scholar
  67. 67.
    Pei, L., Hyun, S., Molinari, J., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53(11), 2385–2409 (2005)CrossRefGoogle Scholar
  68. 68.
    Pérez-Ràfols, F., Roland, L., van Riet, E.J., Almqvist, A.: On the flow through plastically deformed surfaces under unloading: a spectral approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2017). doi: 10.1177/0954406217690180
  69. 69.
    Luan, B., Robbins, M.O.: Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol. Lett. 36(1), 1–16 (2009)CrossRefGoogle Scholar
  70. 70.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces: on the validity of the method of reduction of dimensionality. Tribol. Lett. 58(1), 58 (2015)CrossRefGoogle Scholar
  71. 71.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47–57 (1965)CrossRefGoogle Scholar
  72. 72.
    Lyashenko, I.A., Pastewka, L., Persson, B.N.J.: On the validity of the method of reduction of dimensionality: area of contact, average interfacial separation and contact stiffness. Tribol. Lett. 52(2), 223–229 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Martin H. Müser
    • 1
    • 2
  • Wolf B. Dapp
    • 2
  • Romain Bugnicourt
    • 3
    • 4
  • Philippe Sainsot
    • 3
  • Nicolas Lesaffre
    • 4
  • Ton A. Lubrecht
    • 3
  • Bo N. J. Persson
    • 5
  • Kathryn Harris
    • 6
  • Alexander Bennett
    • 6
  • Kyle Schulze
    • 6
  • Sean Rohde
    • 6
  • Peter Ifju
    • 6
  • W. Gregory Sawyer
    • 6
  • Thomas Angelini
    • 6
  • Hossein Ashtari Esfahani
    • 7
  • Mahmoud Kadkhodaei
    • 7
  • Saleh Akbarzadeh
    • 7
  • Jiunn-Jong Wu
    • 8
  • Georg Vorlaufer
    • 9
  • András Vernes
    • 9
  • Soheil Solhjoo
    • 10
  • Antonis I. Vakis
    • 10
  • Robert L. Jackson
    • 11
  • Yang Xu
    • 11
  • Jeffrey Streator
    • 12
  • Amir Rostami
    • 12
  • Daniele Dini
    • 13
  • Simon Medina
    • 13
  • Giuseppe Carbone
    • 14
  • Francesco Bottiglione
    • 14
  • Luciano Afferrante
    • 14
  • Joseph Monti
    • 15
  • Lars Pastewka
    • 16
    • 17
  • Mark O. Robbins
    • 15
  • James A. Greenwood
    • 18
  1. 1.Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany
  2. 2.John von Neumann Institut für Computing and Jülich Supercomputing Centre, Institute for Advanced SimulationFZ JülichJülichGermany
  3. 3.INSA–Lyon, CNRS UMR5259, Laboratoire de Mécanique des Contacts et des StructuresUniversité LyonVilleurbanne - CedexFrance
  4. 4.Manifacture Française des Pneumatiques Michelin, Centre de Technologie de LadouxCébazatFrance
  5. 5.PGI-1FZ-JülichJülichGermany
  6. 6.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  7. 7.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran
  8. 8.Department of Mechanical EngineeringChang Gung UniversityTaoyuan CityTaiwan
  9. 9.AC2T research GmbHWiener NeustadtAustria
  10. 10.Advanced Production Engineering, Engineering and Technology Institute Groningen, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
  11. 11.Auburn UniversityAuburnUSA
  12. 12.Georgia Institute of TechnologyAtlantaUSA
  13. 13.Department of Mechanical EngineeringImperial College LondonLondonUK
  14. 14.Department of Mechanics, Mathematics and ManagementPolytechnic University of BariBariItaly
  15. 15.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA
  16. 16.Department of Microsystems EngineeringUniversity of FreiburgFreiburg im BreisgauGermany
  17. 17.Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  18. 18.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations