Skip to main content

A Combined QCM and AFM Study Exploring the Nanoscale Lubrication Mechanism of Silica Nanoparticles in Aqueous Suspension


Addition of nanoparticles to liquid lubricants often leads to a reduction in both friction and wear rates for a wide range of solid–liquid–nanoparticle combinations. While the lubricating properties of nanoparticles are well documented, the detailed physical mechanisms remain to be fully explored. In a step toward such an understanding, the nano-tribological properties of gold surfaces immersed in aqueous suspensions of negatively charged SiO2 nanoparticles were examined by means of Quartz Crystal Microbalance (QCM) and Atomic Force Microscopy methods. The SiO2 nanoparticles were found to reduce the resistance to shear motion at the QCM’s solid–liquid interface. The effect was observed to be concentration dependent, with ca. 1.5 wt% yielding the maximum reduction in shear. An electrokinetic mechanism is proposed whereby the loosely bound nanoparticles roll and/or slide on the surface, while upper layers of nanoparticles slip over the surface layer because of the repulsive electrostatic forces between the individual particles. The nanoparticles were observed to remove the electrode material from the gold surface and slightly increase the overall roughness with the major change happening within the first hour of the exposure. This study inherently provides insight into a complex interface of solid, liquid and nanoparticles at a nanometer scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Spikes, H.: Friction modifier additives. Tribol. Lett. (2015). doi:10.1007/s11249-015-0589-z

    Google Scholar 

  2. 2.

    Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)

    Article  Google Scholar 

  3. 3.

    Krim, J.: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61(3), 155–323 (2012)

    Article  Google Scholar 

  4. 4.

    Liu, Z., Leininger, D., Koolivand, A., Smirnov, A.I., Shenderova, O., Brenner, D.W., Krim, J.: Tribological properties of nanodiamonds in aqueous suspensions: effect of the surface charge. RSC Adv. 5(96), 78933–78940 (2015)

    Article  Google Scholar 

  5. 5.

    Liu, X., Xu, N., Li, W., Zhang, M., Chen, L., Lou, W., Wang, X.: Exploring the effect of nanoparticle size on the tribological properties of SiO2/polyalkylene glycol nanofluid under different lubrication conditions. Tribol. Int. 109, 467–472 (2017)

    Article  Google Scholar 

  6. 6.

    Jiao, D., Zheng, S., Wang, Y., Guan, R., Cao, B.: The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl. Surf. Sci. 257, 5720–5725 (2011)

    Article  Google Scholar 

  7. 7.

    Gorbunova, T.I., Zapevalov, A.Y., Beketov, I.V.: Preparation and antifrictional properties of surface modified hybrid fluorine-containing silica particles. Appl. Surf. Sci. 326, 19–26 (2015)

    Article  Google Scholar 

  8. 8.

    Bao, Y.Y., Sun, J.L., Kong, L.H.: Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. IOP Conf. Ser. Mater. Sci. Eng. 182(1), 012025 (2017)

    Article  Google Scholar 

  9. 9.

    Sorensen, C.M.: The mobility of fractal aggregates: a review. Aerosol Sci. Technol. 45(7), 765–779 (2011)

    Article  Google Scholar 

  10. 10.

    Stanford Research System: QCM 100 Quartz Crystal Microbalance Analog Controller—QCM 25 Crystal Oscillator. Stanford Research Systems Inc, California (2002)

    Google Scholar 

  11. 11.

    Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. Acta 175, 99–105 (1985)

    Article  Google Scholar 

  12. 12.

    Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63, 2272–2281 (1991)

    Article  Google Scholar 

  13. 13.

    Martin, S.J., Frye, G.C., Ricco, A.J., Senturia, S.D.: Effects of surface roughness on the response of a thickness-shear mode resonator in liquids. Anal. Chem. 65, 2910–2922 (1993)

    Article  Google Scholar 

  14. 14.

    Urbakh, M., Daikhin, L.: Influence of the surface morphology on the quartz crystal microbalance response in a fluid. Langmuir 10(8), 2836–2841 (1994)

    Article  Google Scholar 

  15. 15.

    Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., Zagidulin, D.: Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74(3), 554–561 (2002)

    Article  Google Scholar 

  16. 16.

    Acharya, B., Sidheswaran, M.A., Yungk, R., Krim, J.: Quartz crystal microbalance apparatus for study of viscous liquids at high temperatures. Rev. Sci. Instrum. 88(2), 025112 (2017)

    Article  Google Scholar 

  17. 17.

    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. A Hadrons Nucl. 155(2), 206–222 (1959)

    Google Scholar 

  18. 18.

    Krim, J., Palasantzas, G.: Experimental observations of self-affine scaling and kinetic roughening at submicron lengthscales. Int. J. Mod. Phys. B 09, 599 (1995)

    Article  Google Scholar 

  19. 19.

    Krim, J., Heyvaert, I., Van Haesendonck, C., Bruynseraede, Y.: Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces. Phys. Rev. Lett. 70(1), 57 (1993)

    Article  Google Scholar 

  20. 20.

    Palasantzas, G., Krim, J.: Scanning tunneling microscopy study of the thick film limit of kinetic roughening. Phys. Rev. Lett. 73(26), 3564 (1994)

    Article  Google Scholar 

  21. 21.

    Urbakh, M., Tsionsky, V., Gileadi, E., Daikhin, L.: Probing the solid/liquid interface with the quartz crystal microbalance. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors, vol. 5, pp. 111–149. Springer, Berlin, Heidelberg (2006)

  22. 22.

    Lane, J.M.D., Ismail, A.E., Chandross, M., Lorenz, C.D., Grest, G.S.: Forces between functionalized silica nanoparticles in solution. Phys. Rev. E 79(5), 050501 (2009)

    Article  Google Scholar 

  23. 23.

    Dultsev, F.N., Kolosovsky, E.A.: QCM model as a system of two elastically bound weights. Sens Actuators B 242, 965–968 (2017)

    Article  Google Scholar 

  24. 24.

    Curtis, C.K., Krim, J.: Comparative study of the distinguishing characteristics of effective eco-friendly lubricants comprised of water-based nanodiamond suspensions. Submitted to Beilstein Journal of Nanotechnology (under review)

  25. 25.

    Jing, D., Pan, Y., Wang, X.: The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential. Beilstein J. Nanotechnol. 8, 1515–1522 (2017). doi:10.3762/bjnano.8.152

    Article  Google Scholar 

  26. 26.

    Tucker, Z.: The performance of translucent silicon-oxide nanoparticle lubricant additives. Tribol. Lubr. Technol. 73(4), 32–34 (2017)

    Google Scholar 

  27. 27.

    Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80(3), 839 (2008)

    Article  Google Scholar 

  28. 28.

    Bocquet, L., Barrat, J.L.: Flow boundary conditions from nano-to micro-scales. Soft Matter 3(6), 685–693 (2007)

    Article  Google Scholar 

Download references


This work was supported by National Science Foundation Award Number DMR1535082. SEM studies were performed at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (Award Number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information



Corresponding author

Correspondence to B. Acharya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acharya, B., Chestnut, M., Marek, A. et al. A Combined QCM and AFM Study Exploring the Nanoscale Lubrication Mechanism of Silica Nanoparticles in Aqueous Suspension. Tribol Lett 65, 115 (2017).

Download citation


  • QCM
  • Nanoscale roughness
  • Nano-additives
  • AFM
  • Fractal
  • SiO2
  • Electrokinetic phenomena