Advertisement

Tribology Letters

, 65:115 | Cite as

A Combined QCM and AFM Study Exploring the Nanoscale Lubrication Mechanism of Silica Nanoparticles in Aqueous Suspension

  • B. Acharya
  • M. Chestnut
  • A. Marek
  • A. I. Smirnov
  • J. Krim
Original Paper

Abstract

Addition of nanoparticles to liquid lubricants often leads to a reduction in both friction and wear rates for a wide range of solid–liquid–nanoparticle combinations. While the lubricating properties of nanoparticles are well documented, the detailed physical mechanisms remain to be fully explored. In a step toward such an understanding, the nano-tribological properties of gold surfaces immersed in aqueous suspensions of negatively charged SiO2 nanoparticles were examined by means of Quartz Crystal Microbalance (QCM) and Atomic Force Microscopy methods. The SiO2 nanoparticles were found to reduce the resistance to shear motion at the QCM’s solid–liquid interface. The effect was observed to be concentration dependent, with ca. 1.5 wt% yielding the maximum reduction in shear. An electrokinetic mechanism is proposed whereby the loosely bound nanoparticles roll and/or slide on the surface, while upper layers of nanoparticles slip over the surface layer because of the repulsive electrostatic forces between the individual particles. The nanoparticles were observed to remove the electrode material from the gold surface and slightly increase the overall roughness with the major change happening within the first hour of the exposure. This study inherently provides insight into a complex interface of solid, liquid and nanoparticles at a nanometer scale.

Keywords

QCM Nanoscale roughness Nano-additives AFM Fractal SiO2 Electrokinetic phenomena 

Notes

Acknowledgements

This work was supported by National Science Foundation Award Number DMR1535082. SEM studies were performed at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (Award Number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

References

  1. 1.
    Spikes, H.: Friction modifier additives. Tribol. Lett. (2015). doi: 10.1007/s11249-015-0589-z Google Scholar
  2. 2.
    Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)CrossRefGoogle Scholar
  3. 3.
    Krim, J.: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61(3), 155–323 (2012)CrossRefGoogle Scholar
  4. 4.
    Liu, Z., Leininger, D., Koolivand, A., Smirnov, A.I., Shenderova, O., Brenner, D.W., Krim, J.: Tribological properties of nanodiamonds in aqueous suspensions: effect of the surface charge. RSC Adv. 5(96), 78933–78940 (2015)CrossRefGoogle Scholar
  5. 5.
    Liu, X., Xu, N., Li, W., Zhang, M., Chen, L., Lou, W., Wang, X.: Exploring the effect of nanoparticle size on the tribological properties of SiO2/polyalkylene glycol nanofluid under different lubrication conditions. Tribol. Int. 109, 467–472 (2017)CrossRefGoogle Scholar
  6. 6.
    Jiao, D., Zheng, S., Wang, Y., Guan, R., Cao, B.: The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl. Surf. Sci. 257, 5720–5725 (2011)CrossRefGoogle Scholar
  7. 7.
    Gorbunova, T.I., Zapevalov, A.Y., Beketov, I.V.: Preparation and antifrictional properties of surface modified hybrid fluorine-containing silica particles. Appl. Surf. Sci. 326, 19–26 (2015)CrossRefGoogle Scholar
  8. 8.
    Bao, Y.Y., Sun, J.L., Kong, L.H.: Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. IOP Conf. Ser. Mater. Sci. Eng. 182(1), 012025 (2017)CrossRefGoogle Scholar
  9. 9.
    Sorensen, C.M.: The mobility of fractal aggregates: a review. Aerosol Sci. Technol. 45(7), 765–779 (2011)CrossRefGoogle Scholar
  10. 10.
    Stanford Research System: QCM 100 Quartz Crystal Microbalance Analog Controller—QCM 25 Crystal Oscillator. Stanford Research Systems Inc, California (2002)Google Scholar
  11. 11.
    Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. Acta 175, 99–105 (1985)CrossRefGoogle Scholar
  12. 12.
    Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63, 2272–2281 (1991)CrossRefGoogle Scholar
  13. 13.
    Martin, S.J., Frye, G.C., Ricco, A.J., Senturia, S.D.: Effects of surface roughness on the response of a thickness-shear mode resonator in liquids. Anal. Chem. 65, 2910–2922 (1993)CrossRefGoogle Scholar
  14. 14.
    Urbakh, M., Daikhin, L.: Influence of the surface morphology on the quartz crystal microbalance response in a fluid. Langmuir 10(8), 2836–2841 (1994)CrossRefGoogle Scholar
  15. 15.
    Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., Zagidulin, D.: Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74(3), 554–561 (2002)CrossRefGoogle Scholar
  16. 16.
    Acharya, B., Sidheswaran, M.A., Yungk, R., Krim, J.: Quartz crystal microbalance apparatus for study of viscous liquids at high temperatures. Rev. Sci. Instrum. 88(2), 025112 (2017)CrossRefGoogle Scholar
  17. 17.
    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. A Hadrons Nucl. 155(2), 206–222 (1959)Google Scholar
  18. 18.
    Krim, J., Palasantzas, G.: Experimental observations of self-affine scaling and kinetic roughening at submicron lengthscales. Int. J. Mod. Phys. B 09, 599 (1995)CrossRefGoogle Scholar
  19. 19.
    Krim, J., Heyvaert, I., Van Haesendonck, C., Bruynseraede, Y.: Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces. Phys. Rev. Lett. 70(1), 57 (1993)CrossRefGoogle Scholar
  20. 20.
    Palasantzas, G., Krim, J.: Scanning tunneling microscopy study of the thick film limit of kinetic roughening. Phys. Rev. Lett. 73(26), 3564 (1994)CrossRefGoogle Scholar
  21. 21.
    Urbakh, M., Tsionsky, V., Gileadi, E., Daikhin, L.: Probing the solid/liquid interface with the quartz crystal microbalance. In: Steinem, C., Janshoff, A. (eds.) Piezoelectric Sensors, vol. 5, pp. 111–149. Springer, Berlin, Heidelberg (2006)Google Scholar
  22. 22.
    Lane, J.M.D., Ismail, A.E., Chandross, M., Lorenz, C.D., Grest, G.S.: Forces between functionalized silica nanoparticles in solution. Phys. Rev. E 79(5), 050501 (2009)CrossRefGoogle Scholar
  23. 23.
    Dultsev, F.N., Kolosovsky, E.A.: QCM model as a system of two elastically bound weights. Sens Actuators B 242, 965–968 (2017)CrossRefGoogle Scholar
  24. 24.
    Curtis, C.K., Krim, J.: Comparative study of the distinguishing characteristics of effective eco-friendly lubricants comprised of water-based nanodiamond suspensions. Submitted to Beilstein Journal of Nanotechnology (under review)Google Scholar
  25. 25.
    Jing, D., Pan, Y., Wang, X.: The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential. Beilstein J. Nanotechnol. 8, 1515–1522 (2017). doi: 10.3762/bjnano.8.152 CrossRefGoogle Scholar
  26. 26.
    Tucker, Z.: The performance of translucent silicon-oxide nanoparticle lubricant additives. Tribol. Lubr. Technol. 73(4), 32–34 (2017)Google Scholar
  27. 27.
    Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80(3), 839 (2008)CrossRefGoogle Scholar
  28. 28.
    Bocquet, L., Barrat, J.L.: Flow boundary conditions from nano-to micro-scales. Soft Matter 3(6), 685–693 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  2. 2.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations