Skip to main content
Log in

Effects of Anisotropy and Substrate Shape on Atomic Friction Force in Two-Dimensional Model

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Understanding the effects of anisotropy and substrate shape on atomic friction force is critically needed for the designed development of nanoscale friction devices. The simulation of atomic force microscope on various substrate shapes using the 2D Prandtl–Tomlinson model is investigated in the framework of three representative surface lattices: \({\hbox {MoS}}_2\), NaCl and highly oriented pyrolytic graphite surfaces. The results show that the lateral force map reveals a significant contrast between different surface lattice shapes yielding lattice rows which differ from their neighboring ones. Careful analysis of the friction force during the individual friction scanning revealed that the friction forces over the narrow maxima domains were lower than those over the narrow wells domains. Depending on crystal orientation and the potential shape, variations in the frictional force can also be seen in the simulations. It has been numerically observed that frictional force depends on the crystal orientation as well as on the shape of the substrate potential. Velocity dependence of the kinetic friction force has the form of a power law \(F_{k}-F_{k0}={\hbox {cst}} \, v_{\mathrm{s}}^{2/3}\), for small scanning velocities. The effects of the shape parameter r on this law have been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  Google Scholar 

  2. Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994)

    Article  Google Scholar 

  3. Koinkar, V.N., Bhushan, B.: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J. Vac. Sci. Technol. A 14, 2378–2391 (1996)

    Article  Google Scholar 

  4. Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, R11301–R11304 (1999)

    Article  Google Scholar 

  5. Prioli, R., Rivas, A.F.M., Freire Jr., F.L., Caride, A.O.: Influence of velocity in nanoscale friction processes. Appl. Phys. A 76, 565–569 (2003)

    Article  Google Scholar 

  6. Israelachvili, J.N., Tabor, D.: The shear properties of molecular films. Wear 24, 386–390 (1973)

    Article  Google Scholar 

  7. Mak, C., Krim, J.: Quartz-crystal microbalance studies of the velocity dependence of interfacial friction. Phys. Rev. B 58, 5157–5159 (1998)

    Article  Google Scholar 

  8. Matsukawa, H., Fukuyama, H.: Theoretical study of friction: one-dimensional clean surfaces. Phys. Rev. B 49, 17286–17292 (1994)

    Article  Google Scholar 

  9. Prandtl, L.: Hypothetical model for the kinetic theory of solid bodies. Z. Angew. Math. Mech. 8, 85–106 (1928)

    Article  Google Scholar 

  10. Tomlinson, G.: A molecular theory of friction. Philos. Mag. 7, 905–939 (1929)

    Article  Google Scholar 

  11. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414–045422 (2009)

    Article  Google Scholar 

  12. Fessler, G., Zimmermann, I., Glatzel, T., Gnecco, E., Steiner, P., Roth, R., Keene, T.D., Liu, S.X., Decurtins, S., Meyer, E.: Orientation dependent molecular friction on organic layer compound crystals. Appl. Phys. Lett. 98, 083119–083121 (2011)

    Article  Google Scholar 

  13. Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: a comparative study of the one-and two-dimensional Tomlinson model. Phys. Rev. B 71, 045413–045422 (2005)

    Article  Google Scholar 

  14. Djuidjé Kenmoé, G., Takoutsing, C.S., Kofané, T.C.: Angular dependence of atomic friction with deformable substrate. Eur. Phys. J. B 88, 21–27 (2015)

    Article  Google Scholar 

  15. Djuidjé Kenmoé, G., Djiha Tchaptchet, E., Kofané, T.C.: Thermal effect on atomic friction with deformable substrate. Tribol. Lett. 55, 533–542 (2014)

    Article  Google Scholar 

  16. Djuidjé Kenmoé, G., Kenfack Jiotsa, A., Kofané, T.C.: Stick-slip motion in a driven two-nonsinusoidal Remoissenet–Peyrard potential. Phys. D 191, 31–48 (2004)

    Article  Google Scholar 

  17. Gnecco, E., Fajardo, O.Y., Pina, C.M., Mazo, J.J.: Anisotropy effects in atomic-scale friction. Tribol. Lett. 48, 33–39 (2012)

    Article  Google Scholar 

  18. Furlong, O.J., Manzi, S.J., Martini, A., Tysoe, W.T.: Influence of potential shape on constant-force atomic-scale sliding friction models. Tribol. Lett. 60, 21–29 (2015)

    Article  Google Scholar 

  19. Remoissenet, M., Peyrard, M.: Solitonlike excitations in a one dimensional atomic chain with a nonlinear deformable substrate potential. Phys. Rev. B 26, 2886–2899 (1982)

    Google Scholar 

  20. Alexander, T.J., Salerno, M., Ostrovskaya, E.A., Kivshar, Y.S.: Matter waves in anharmonic periodic potentials. Phys. Rev. A 77, 043607–043615 (2008)

    Article  Google Scholar 

  21. Verhoeven, G.S., Dienwiebel, M., Frenken, J.W.M.: Model calculations of superlubricity of graphite. Phys. Rev. B 70, 165418–165427 (2004)

    Article  Google Scholar 

  22. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301–134304 (2004)

    Article  Google Scholar 

  23. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Meyer, E.: Angular dependence of static and kinetic friction on alkali halide surface. Phys. Rev. B 82, 205417–205425 (2010)

    Article  Google Scholar 

  24. Steiner, P., Gnecco, E., Filleter, T., Gosvami, N.N., Maier, S., Meyer, E., Bennewitz, R.: Atomic friction investigations on ordered superstructures. Tribol. Lett. 39, 321–327 (2010)

    Article  Google Scholar 

  25. Igarashi, M., Natori, A., Nakamura, J.: Size effects in friction of multiatomic sliding contacts. Phys. Rev. B 78, 165427–165436 (2008)

    Article  Google Scholar 

  26. Dong, Y., Vadakkeppatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44, 367–386 (2011)

    Article  Google Scholar 

  27. Hölscher, H., Schwarz, U.D., Zwörner, O., Wiesendanger, R.: Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Phys. Rev. B 57, 2477–2481 (1998)

    Article  Google Scholar 

  28. Lüthi, R., Meyer, E., Bammerlin, M., Howald, L., Haefke, H., Lehmann, T., Loppacher, C., Güntherodt, H.-J., Gyalog, T., Thomas, H.: Friction on the atomic scale: an ultrahigh vacuum atomic force microscopy study on ionic crystals. J. Vac. Sci. Technol. B 14(2), 1280–1284 (1996)

    Article  Google Scholar 

  29. Fujisawa, S., Kishi, E., Sugawara, Y., Morita, S.: Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys. Rev. B 51, 7849–7857 (1995)

    Article  Google Scholar 

  30. Müser, M.H.: Nature of mechanical instabilities and their effect on kinetic friction. Phys. Rev. Lett. 89, 224301–224304 (2002)

    Article  Google Scholar 

  31. Helman, J.S., Baltensperger, W., Holyst, J.A.: Simple model for dry friction. Phys. Rev. B 49, 3831–3838 (1994)

    Article  Google Scholar 

  32. Sasaki, N., Kobayashi, K., Tsukada, M.: Load dependence of the frictional-force microscopy image pattern of the graphite surface. Phys. Rev. B 57(7), 3785–3786 (1998)

    Article  Google Scholar 

  33. Fajardo, O.Y., Gnecco, E., Mazo, J.J.: Anisotropy effects and friction maps in the framework of the 2d PT model. Physica B 455, 44–48 (2014)

    Article  Google Scholar 

  34. Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 84, 125419–125432 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Takoutsing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takoutsing, C.S., Djuidjé Kenmoé, G. & Kofané, T.C. Effects of Anisotropy and Substrate Shape on Atomic Friction Force in Two-Dimensional Model. Tribol Lett 65, 107 (2017). https://doi.org/10.1007/s11249-017-0889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0889-6

Keywords

Navigation