Tribology Letters

, 65:95 | Cite as

Elastohydrodynamics for Soft Solids with Surface Roughness: Transient Effects

  • M. ScaraggiEmail author
  • L. Dorogin
  • J. Angerhausen
  • H. Murrenhoff
  • B. N. J. Persson
Original Paper


A huge number of technological and biological systems involve the lubricated contact between rough surfaces of soft solids in relative accelerated motion. Examples include dynamical rubber seals and the human joints. In this study, we consider an elastic cylinder with random surface roughness in accelerated sliding motion on a rigid, perfectly flat (no roughness) substrate in a fluid. We calculate the surface deformations, interface separation and the contributions to the friction force and the normal force from the area of real contact and from the fluid. The driving velocity profile as a function of time is assumed to be either a sine function, or a linear multi-ramp function. We show how the squeeze-in and squeeze-out processes, occurring in accelerated sliding, quantitatively affect the Stribeck curve with respect to the steady sliding. Finally, the theory results are compared to experimental data.


Rubber friction Wet contact Soft contact Lubrication Transient contact Seals Tires 



We thank S.-C. Vladescu and T. Reddyhoff (Ref. [27]) for supplying the numerical data used for Fig. 13 and 14. This work was performed within a Reinhart-Koselleck project funded by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank DFG for the project support under the reference German Research Foundation DFG-Grant: MU 1225/36-1. The research work was also supported by the DFG-Grant: PE 807/10-1 and DFG-Grant No. HE 4466/34-1. MS acknowledges FZJ for the support and the kind hospitality received during his visit to the PGI-1. Finally, MS also acknowledges COST Action MP1303 for grant STSM-MP1303-171016-080763.


  1. 1.
    Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Gnecco, E., Meyer, E.: Elements of Friction Theory and Nanotribology. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  3. 3.
    Dunn, A.C., Tichy, J.A., Uruena, J.M., Sawyer, W.G.: Lubrication regimes in contact lens wear during a blink. Tribol. Int. 63, 45 (2013)CrossRefGoogle Scholar
  4. 4.
    Dapp, W.B., Lucke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244301 (2012)CrossRefGoogle Scholar
  5. 5.
    Dowson, D., Higginson, G.R.: A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1, 6 (1959)CrossRefGoogle Scholar
  6. 6.
    Gohar, R.: Elastohydrodynamics, 2nd edn. World Scientific Publishing, Singapore (2001)CrossRefGoogle Scholar
  7. 7.
    Persson, B.N.J., Scaraggi, M.: Lubricated sliding dynamics: flow factors and Stribeck curve. Eur. Phys. J. E 34, 113 (2011)CrossRefGoogle Scholar
  8. 8.
    Persson, B.N.J., Scaraggi, M.: On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. J. Phys. Condens. Matter 21, 185002 (2009)CrossRefGoogle Scholar
  9. 9.
    Persson, B.N.J.: Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 22, 265004 (2010)CrossRefGoogle Scholar
  10. 10.
    Scaraggi, M., Carbone, G., Persson, B.N.J., Dini, D.: Lubrication in soft rough contacts: a novel homogenized approach. Part I—theory. Soft Matter 7, 10395 (2011)CrossRefGoogle Scholar
  11. 11.
    Scaraggi, M., Persson, B.N.J.: Time-dependent fluid squeeze-out between soft elastic solids with randomly rough surfaces. Tribol. Lett. 47, 409 (2012)CrossRefGoogle Scholar
  12. 12.
    Lorenz, B., Persson, B.N.J.: Time-dependent fluid squeeze-out between solids with rough surfaces. Eur. Phys. J. E 32, 281 (2010)CrossRefGoogle Scholar
  13. 13.
    Blok, H.: Inverse Problems in Hydrodynamic Lubrication and Design Directives for Lubricated Flexible Surfaces. McCutchen Publishing Company, Berkeley (1965)Google Scholar
  14. 14.
    Thatte, A., Salant, R.F.: Transient EHL analysis of an elastomeric hydraulic seal. Tribol. Int. 42(10), 14241432 (2009)CrossRefGoogle Scholar
  15. 15.
    Thatte, A., Salant, R.F.: Visco-elastohydrodynamic model of a hydraulic rod seal during transient operation. J. Tribol. 132(4), 041501 (2010). doi: 10.1115/1.4002542 CrossRefGoogle Scholar
  16. 16.
    Schmidt, T., André, M., Poll, G.: A transient 2D-finite-element approach for the simulation of mixed lubrication effects of reciprocating hydraulic rod seals. Tribol. Int. 43(10), 17751785 (2010)CrossRefGoogle Scholar
  17. 17.
    Patir, N., Cheng, H.S.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100(1), 12–17 (1978)CrossRefGoogle Scholar
  18. 18.
    Persson, B.N.J.: Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett. 99, 125502 (2007)CrossRefGoogle Scholar
  19. 19.
    Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter 20, 215214 (2008)CrossRefGoogle Scholar
  20. 20.
    Almqvist, A., Campana, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355 (2011)CrossRefGoogle Scholar
  21. 21.
    Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett. 54, 99–106 (2014)CrossRefGoogle Scholar
  22. 22.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201227 (2006)CrossRefGoogle Scholar
  23. 23.
    Persson, B.N.J., Lorenz, B., Shimizu, M., Koishi, M.: Multiscale contact mechanics with application to seals and rubber friction on dry and lubricated surfaces. In: Designing of Elastomer Nanocomposites: From Theory to Applications, Volume 275 of the series Advances in Polymer Science, pp. 103–156, Springer, Berlin (2016)Google Scholar
  24. 24.
    Scaraggi, M., Carbone, G., Dini, D.: Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribol. Lett. 43(2), 169–174 (2011)CrossRefGoogle Scholar
  25. 25.
    Roberts, A.D., Tabor, D.: The extrusion of liquids between highly elastic solids. Proc. R. Soc. Lond. A 325, 323 (1971)CrossRefGoogle Scholar
  26. 26.
    Lorenz, B., Krick, B.A., Rodriguez, N., Sawyer, W.G., Mangiagalli, P., Persson, B.N.J.: Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting. J. Phys. Condens. Matter 25, 445013 (2013)CrossRefGoogle Scholar
  27. 27.
    Vladescu, S.-C., Medina, S., Olver, A.V., Pegg, I.G., Reddyhoff, T.: Lubricant film thickness and friction force measurements in a laser surface textured reciprocating line contact simulating the piston ringliner pairing. Tribol. Int. 98, 317 (2016)CrossRefGoogle Scholar
  28. 28.
    Scaraggi, M., Carbone, G.: Transition from elastohydrodynamic to mixed lubrication in highly loaded squeeze contacts. J. Mech. Phys. Solids 58(9), 1361–1373 (2010)CrossRefGoogle Scholar
  29. 29.
    Scaraggi, M., Angerhausen, J., Dorogin, L., Murrenhoff, H., Persson, B.N.J.: Influence of anisotropic surface roughness on lubricated rubber friction with application to hydraulic seals (2017, under review)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.DIIUniversitá del SalentoMonteroni-LecceItaly
  2. 2.PGI-1FZ JülichJülichGermany
  3. 3.IFASRWTH Aachen UniversityAachenGermany

Personalised recommendations