Skip to main content
Log in

Formation Factors of the Surface Layer Generated from Serpentine as Lubricant Additive and Composite Reinforcement

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Serpentine is usually added into oil for tribological applications. To explore the performance and mechanism of serpentine, three different kinds of pins were tested under lubricated/dry sliding conditions. The result shows that a surface layer with an excellent anti-friction property was formed on the surface of worn steel. The binding ability between the matrix elements in the wear-induced transition zone and the unsaturated bonds released by serpentine is the key factor to form the anti-friction surface layer. Meanwhile, the hardness of the pairing material and frictional contact time determine the thickness and surface roughness of the anti-friction surface layer. In all, this work is hoped to be helpful in designing and researching a new industrial anti-friction material which can be used for dry sliding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng, T.W., Hsu, C.W.: A study of silicon carbide synthesis from waste serpentine. Chemosphere 64, 510–514 (2006)

    Article  Google Scholar 

  2. Schulze, R.K., Hill, M.A., Field, R.D., Papin, P.A., Hanrahan, R.J., Byler, D.D.: Characterization of carbonated serpentine using XPS and TEM. Energy Convers. Manag. 45, 3169–3179 (2004)

    Article  Google Scholar 

  3. Farhanga, F., Olivera, T.K., Raysonb, M., Brentb, G., Stockenhubera, M., Kennedy, E.: Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chem. Eng. J. 1, 439–449 (2016)

    Article  Google Scholar 

  4. Zhang, Q.W., Sugiyama, K., Saito, F.: Enhancement of acid extraction of magnesium and silicon from serpentine by mechanochemical treatment. Hydrometallurgy 45, 323–331 (1997)

    Article  Google Scholar 

  5. Jin, Y.S., Li, S.H., Zhang, Z.Y., Yang, H., Wang, F.: In situ mechanochemical reconditioning of worn ferrous surfaces. Tribol. Int. 37, 561–567 (2004)

    Article  Google Scholar 

  6. Higgs III, C.F., Wornyoh, E.Y.A.: An in situ mechanism for self-replenishing powder transfer films: experiment sand modeling. Wear 264, 131–138 (2008)

    Article  Google Scholar 

  7. Zhao, F.Y., Kasrai, M., Sham, T.K., Bai, Z.M.: Characterization of tribofilms generated from serpentine and commercial oil using X-ray absorption spectroscopy. Tribol. Lett. 50, 287–297 (2013)

    Article  Google Scholar 

  8. Pogodaev, L.I., Buynaovskii, I.A., Kryukov, E.Y.: The mechanism of interaction between natural laminar hydrosilicates and friction surfaces. J. Mach. Manuf. Reliab. 38, 476–484 (2009)

    Article  Google Scholar 

  9. Yu, H.L., Xu, Y., Shi, P.J., Wang, H.M., Wei, M., Zhao, K.K., Xu, B.S.: Microstructure, mechanical properties and tribological behavior of tribofilm generated from natural serpentine mineral powders as lubricant additive. Wear 297, 802–810 (2013)

    Article  Google Scholar 

  10. Wang, F.: Research on microstructure of the auto-restoration layer of worn surface of metals. Mater. Sci. Eng. A 399, 271–275 (2005)

    Article  Google Scholar 

  11. Yu, H.L., Xu, Y., Shi, P.J.: Tribological behaviors of surfaced-coated serpentine ultrafine powders as lubricant additive. Tribol. Int. 43, 667–675 (2010)

    Article  Google Scholar 

  12. Zhang, B.S., Xu, Y., Gao, F., Shi, P.J., Xu, B.S., Wu, Y.X.: Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive. Appl. Surf. Sci. 257, 2540–2549 (2011)

    Article  Google Scholar 

  13. Wang, X., Wu, J.W., Wei, X.C., Liu, R.D., Cao, Q.: The effect of serpentine additive on energy-saving and auto-reconditioning surface layer formation. Ind. Lubr. Tribol. 69, 158–165 (2017)

    Article  Google Scholar 

  14. Jin, K.J., Qiao, Z.H., Zhu, S.Y., Cheng, J., Yin, B., Yang, J.: Synthesis effects of Cr and Ag on the tribological properties of Cu–9Al–5Ni–4Fe–Mn bronze under seawater condition. Tribol. Int. 101, 69–80 (2016)

    Article  Google Scholar 

  15. Zhang, B.S., Xu, B.S., Xu, Y., Gao, F., Shi, P.J., Wu, Y.X.: Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel–steel contacts. Tribol. Int. 44, 866–878 (2011)

    Google Scholar 

  16. Almomani, M.A., Tayfour, W.R., Nimrat, M.H.: Effect of silicon carbide addition on the corrosion behavior of powder metallurgy Cu–30Zn brass in a 3.5 wt% NaCl solution. J. Alloys Compd. 679, 104–114 (2016)

    Article  Google Scholar 

  17. Jia, Z.N., Yang, Y.L., Chen, J.J., Yu, X.J.: Influence of serpentine content on tribological behaviors of PTFE/serpentine composite under dry sliding condition. Wear 268, 996–1001 (2010)

    Article  Google Scholar 

  18. Wang, X., Wei, X.C., Hong, X.L., Yang, J.Y., Wang, W.R.: Formation of sliding friction-induced deformation layer with nanocrystalline structure in T10 steel against 20CrMnTi steel. Appl. Surf. Sci. 280, 381–387 (2013)

    Article  Google Scholar 

  19. Singh, J.B., Wen, J.G., Bellon, P.: Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater. 56, 3053–3064 (2008)

    Article  Google Scholar 

  20. Meng-Burany, X., Perry, T.A., Sachdev, A.K., Alpas, A.T.: Subsurface sliding wear damage characterization in Al–Si alloys using focused ion beam and cross-sectional TEM techniques. Wear 207, 152–162 (2011)

    Article  Google Scholar 

  21. Wei, X., Hua, M., Xue, Z., Gao, Z., Li, J.: Evolution of friction-induced microstructure of SUS 304 meta-stable austenitic stainless steel and its influence on wear behavior. Wear 267, 1386–1392 (2009)

    Article  Google Scholar 

  22. Wang, X., Wei, X.C., Yang, X.R., Cheng, Z.B., Wang, W.R.: Atomic diffusion of gradient ultrafine structured surface layer produced by T10 steel rubbing against 20CrMnTi steel. Wear 304, 118–125 (2013)

    Article  Google Scholar 

  23. Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater. Sci. Eng. A 374, 390–397 (2004)

    Article  Google Scholar 

  24. Qi, X.W., Jia, Z.N., Yang, Y.L., Fan, B.L.: Characterization and auto-restoration mechanism of nanoscale serpentine powder as lubricating oil additive under high temperature. Tribol. Int. 44, 805–810 (2011)

    Article  Google Scholar 

  25. Yang, Y.L., Ma, J., Qi, X.W., Meng, X.S.: Fabrication of nano serpentine–potassium acetate intercalation compound and its effect as additive on tribological properties of the fabric self-lubricating liner. Wear 318, 202–211 (2014)

    Article  Google Scholar 

  26. Lin, A., Takano, S., Hirono, T., Kanagawad, K.: Coseismic dehydration of serpentinite: evidence from high-velocity friction experiments. Chem. Geol. 344, 50–62 (2013)

    Article  Google Scholar 

  27. Kim, D.J., Chung, H.S.: Synthesis and characterization of ZSM-5 zeolite from serpentine. Appl. Clay Sci. 24, 69–77 (2003)

    Article  Google Scholar 

  28. Wang, X., Mao, D.D., Wei, X.C., Wang, W.R.: Cr atom diffusion in tribolayer T10 steel induced by dry sliding against 20CrMnTi steel. Appl. Surf. Sci. 270, 145–149 (2013)

    Article  Google Scholar 

  29. Yua, T.H., Torresa, R., Merinovb, B.V., Goddardb, W.A.: Elucidating challenges of reactions with correlated reactant and product binding energies on an example of oxygen reduction reaction. J. Mol. Catal. A Chem. 423, 449–456 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant number 50975166, 51475280] and Excellent Engineer Training Program (Metallic material engineering of Shanghai University) of Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, X., Zhou, L. et al. Formation Factors of the Surface Layer Generated from Serpentine as Lubricant Additive and Composite Reinforcement. Tribol Lett 65, 93 (2017). https://doi.org/10.1007/s11249-017-0873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0873-1

Keywords

Navigation