Skip to main content

A Model for Head/Tape Friction for Smooth Media

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We present a model for calculating the friction at the head/tape interface as a function of wrap angle, tape speed, tension and head dimensions. The model is based on the Euler–Bernoulli beam equation and the Reynolds equation. Several refinements relative to previous implementations are introduced: specifically a multi-coefficient slip-flow correction is implemented to deal with the reduction of spacing, the skiving-edge profile is modeled using interferometer microscope measurements to account for edge rounding, and the tension asymmetry due to friction is accounted for. Results from the model are compared with experimental measurements of friction versus wrap angle and tape velocity. The model and the experiment show excellent agreement under the range of conditions studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. IBM is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.


  1. Marchon, B., Pitchford, T., Hsia, Y.T., Gangopadhyay, S.: Thehead-disk interface roadmap to an areal density of Tbit/in2.Adv. Tribol. 2013 (2013)

  2. McClelland, G.M., Berman, D., Jubert, P.O., Imaino, W., Noguchi, H., Asai, M., Takano, H.: Effect of tape longitudinal dynamics on timing recovery and channel performance. IEEE Trans. Magn. 45(10), 3587 (2009)

    Article  Google Scholar 

  3. Cherubini, G., Cideciyan, R.D., Dellmann, L., Eleftheriou, E., Haeberle, W., Jelitto, J., Kartik, V., Lantz, M.A., Olcer, S., Pantazi, A., Rothuizen, H.E., Berman, D., Imaino, W., Jubert, P.O., McClelland, G., Koeppe, P.V., Tsuruta, K., Harasawa, T., Murata, Y., Musha, A., Noguchi, H., Ohtsu, H., Shimizu, O., Suzuki, R.: 29.5-Gb/in\(^2\) recording areal density on barium ferrite tape. IEEE Trans. Magn. 47(1), 137 (2011). doi:10.1109/TMAG.2010.2076797

    Article  Google Scholar 

  4. Yang, H., Müftü, S.: Coupling between the in-plane and lateral tape dynamics in high capacity linear tape transport systems. IFAC Proc. Vol. 47(3), 5914 (2014)

    Article  Google Scholar 

  5. Müftü, S., Kaiser, D.J.: Measurements and theoretical predictions of head/tape spacing over a flat-head. Tribol. Int. 33(5), 415 (2000)

    Article  Google Scholar 

  6. Müftü, S.: Tape mechanics over a flat recording head under uniform pull-down pressure. Microsyst. Technol. 9(8), 546 (2003)

    Article  Google Scholar 

  7. Engelen, J.B., Furrer, S., Rothuizen, H.E., Lantz, M.A.: Flat-profile tape-head friction and magnetic spacing. IEEE Trans. Magn. 50(3), 34 (2014)

    Article  Google Scholar 

  8. Biskeborn, R.G., Eaton, J.H.: Flat-profile tape recording head. IEEE Trans. Magn. 38r(5), 1919 (2002)

    Article  Google Scholar 

  9. Shi, B.J., Feng, Y.J., Ji, J.D., Li, L., Zhang, C.: Simplified precise model of Reynolds equation for simulating ultra-thin gas film lubrication in hard disk drives. Microsyst. Technol. 21(12), 2517 (2015)

    Article  Google Scholar 

  10. Slanina, F.: Collective behavior of asperities in dry friction at small velocities. Phys. Rev. E 59(4), 3947 (1999)

    Article  Google Scholar 

  11. COMSOL Multiphysics® v. 5.2. COMSOL AB, Stockholm, Sweden

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Reininger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reininger, P., Engelen, J.B.C., Häberle, W. et al. A Model for Head/Tape Friction for Smooth Media. Tribol Lett 65, 65 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Sliding contact friction
  • Boundary lubrication friction
  • Friction modeling
  • Magnetic data storage
  • Magnetic data recording heads
  • Tape head friction
  • Magnetic spacing