Skip to main content
Log in

The Influence of Tribolayer Formation on Tribological Performance of Rolling/Sliding Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In the present study, a series of dedicated experiments has been performed to observe and measure the build-up of ZDDP tribolayer in rolling/sliding heavily loaded mixed-lubricated contacts. The experiments were carried out using several test configurations. First, ball-on-disc tests were run to investigate the effects of the contact pressure, temperature, and roughness on tribolayer formation. Then, micropitting tests were carried out, with bearing components and with rolling bearings, in order to evaluate the influence of tribolayer build-up on the tribological performance of the rolling/sliding contacts. The obtained experimental data were used first to calibrate a specially developed thermomechanical model and secondly to validate it under different operating conditions and at different levels, up to assessment of the tribological performance, by measuring the level of micropitting on the surfaces. The results show that a relatively simple thermomechanical model can account for tribolayer formation and removal and their effects on the contact performance in a relatively consistent way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Hertzian semi-width in the x-direction (m)

A :

Pre-factor in the modified Arrhenius equation

C :

Pre-factor in the tribolayer growth equation (s−1)

\(E_{\text{act}}\) :

Activation energy for chemical reaction (J)

g :

Coordinate function, \(g = \sqrt {\left( {x - x'} \right)^{2} + \left( {y - y'} \right)^{2} + z^{2} }\) (m)

h :

Local tribolayer thickness (m)

\(h_{\text{c}}\) :

Central lubricant film thickness (m)

\(h_{\text{f}}\) :

Final tribolayer thickness (m)

\(h_{ \hbox{max} }\) :

Local tribolayer thickness limit (m)

Δh :

Net change in the local tribolayer thickness per loading cycle (m)

\(\Delta h_{\text{TL}}\) :

Incremental tribolayer growth per loading cycle (m)

\(\Delta h_{\text{w}}\) :

Local removed material height (due to wear) per load cycle (m)

H :

Hardness of the steel (Pa)

k :

Dimensional Archard’s wear coefficient (s)

\(k_{\text{B}}\) :

Boltzmann constant (J K−1)

\(k_{\text{s}}\) :

Thermal conductivity of steel (W m−1 K−1)

P :

Probability of molecules undergoing a chemical process

p :

Contact pressure (Pa)

\(p_{\text{o}}\) :

Maximum Hertzian contact pressure (Pa)

q :

Heat flux (W m−2)

q 0 :

Amplitude of heat source (W m−2)

l :

Contact length in the rolling direction (x), l ≈ 2a (m)

R :

Fundamental solution associated with heat source shape (J K−1)

\(R_{\text{q}}\) :

R.m.s. for roughness (m)

S :

Slide-to-roll ratio, \(S = (u_{2} - u_{1} )/\bar{u}\)

\(S_{\text{q}}\) :

Area of heat source (m2)

t :

Time (s)

Δt :

Time step in the model (s)

T :

Temperature °C

u :

Surface speed (m s−1)

U :

Mean speed U = (u 2 + u 1)/2 (m s−1)

\(u_{\text{s}}\) :

Sliding speed, \(u_{\text{s}} = (u_{2} - u_{1} )\) (m s−1)

\(\Delta V_{\text{act}}\) :

Activation volume (m3)

x :

Rolling direction coordinate (m)

x :

Rolling direction coordinate of the moving heat flux (m)

y :

Transverse to rolling coordinate (m)

y :

Transverse to rolling coordinate of the moving heat flux (m)

z :

Normal to surface coordinate (m)

\(\alpha\) :

Piezoviscosity coefficient (Pa−1)

\(\alpha^{\prime}\) :

Heat partition function

\(\eta\) :

Dynamic viscosity of the lubricant at the actual temperature (Pa s)

Λ :

Lubrication quality parameter for film thickness Λ = h c /R q

\(\mu\) :

Friction coefficient

\(\tau\) :

Shear stress (Pa)

\(\tau_{0}\) :

Eyring stress of the lubricant (Pa)

\(\chi\) :

Thermal diffusivity of steel (m2 s−1)

1, 2 :

Corresponds to surface 1 or 2, respectively

b1, b2 :

Corresponds to bulk temperatures

l :

Corresponds to fully lubricated patches of the contact area

bl :

Corresponds to boundary-lubricated patches of the contact area

References

  1. Nixon, H.P., Zantopulos, H.: Lubricant additives, friend or foe: what the equipment design engineer needs to know. Lubr. Eng. 51(10), 815–822 (1995)

    Google Scholar 

  2. Wan, G.T.Y., Amerongen, E.V., Lankamp, H.: Effect of extreme-pressure additives on rolling bearing fatigue life. J. Phys D Appl Phys 25, A147 (1992)

    Article  Google Scholar 

  3. Wan, G.T.Y., Lankamp, H., de Vries, A., Ioannides, E.: The effect of extreme pressure (EP) lubricants on the life of rolling element bearings. Proc. IMechE. 208, 247–251 (1994)

    Article  Google Scholar 

  4. Torrance, A.A., Morgan, J.E., Wan, G.T.Y.: An additive’s influence on the pitting and wear of ball bearing steel. Wear 192, 66–73 (1996)

    Article  Google Scholar 

  5. Pasaribu, H.R., Lugt, P.M.: The composition of reaction layers on rolling bearings lubricated with gear oils and its correlation with rolling bearing performance. Tribol. Trans. 55(3), 351–356 (2012)

    Article  Google Scholar 

  6. Naviera-Suarez, A., Tomala, A., Grahn, M., Zaccheddu, M., Pasaribu, H.R., Larsson, R.: The influence of base oil polarity and slide-roll ratio on additive-derived reaction layer formation. Proc. IMechE Part J J. Eng. Tribol. 225(7), 565–576 (2011)

    Article  Google Scholar 

  7. Fujita, H., Spikes, H.: The formation of zinc dithiophosphate antiwear films. Proc. IMechE Part J J. Eng. Tribol. 218, 265–278 (2004)

    Article  Google Scholar 

  8. Fujita, H., Spikes, H.A.: Study of zinc dialkyldithiophosphate antiwear film formation and removal process, part I: experimental. Tribol. Trans. 48(4), 558–566 (2005)

    Article  Google Scholar 

  9. Fujita, H., Spikes, H.A.: Study of zinc dialkyldithiophosphate antiwear film formation and removal process, part II: kinetic model. Tribol. Trans. 48(4), 567–575 (2005)

    Article  Google Scholar 

  10. Brizmer, V., Pasaribu, H.R., Morales-Espejel, G.E.: Micropitting performance of oil additives in lubricated rolling contacts. Tribol. Trans. 56(5), 739–748 (2013)

    Article  Google Scholar 

  11. Morales-Espejel, G.E., Brizmer, V.: Micropitting modelling in rolling-sliding contacts: application to rolling bearings. Tribol. Trans. 54(4), 625–643 (2011)

    Article  Google Scholar 

  12. Morales-Espejel, G.E., Wemekamp, A.W., Félix-Quiñonez, A.: Micro-geometry effects on sliding friction transition in elastohydrodynamic lubrication. Proc. IMechE Part J J. Eng. Tribol. 224, 621–637 (2010)

    Article  Google Scholar 

  13. Andersson, J., Larsson, R., Almqvist, A., Grahn, M., Minami, I.: Semi-deterministic chemo-mechanical model of boundary lubrication. Faraday Discuss. 156(1), 343–360 (2012)

    Article  Google Scholar 

  14. Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230), 102–106 (2015)

    Article  Google Scholar 

  15. Ghanbarzadeh, A., Wilson, M., Morina, A., Dowson, D., Neville, A.: Development of a new mechano-chemical model in boundary lubrication. Tribol. Int. 93, 573–582 (2016)

    Article  Google Scholar 

  16. Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 24 (2016). doi:10.1007/s11249-016-0706-7

    Article  Google Scholar 

  17. MTM2 Operational Manual V2.6. PCS Instruments, 78 Stanley Gardens, London W3 7SZ, UK (2012)

  18. Shimizu, Y., Spikes, H.: The influence of slide-to-roll ratio on ZDDP tribofilm formation. Tribol. Lett. 64, 19 (2016). doi:10.1007/s11249-016-0738-z

    Article  Google Scholar 

  19. Benyajati, C., Olver, A.V.: The effect of an ZnDTP anti-wear additive on micropitting resistance of carburised steel rollers. AGMA Technical paper. 04FTM06, pp. 1–10 (2004)

  20. Lainé, E., Olver, A.V., Beveridge, T.A.: Effect of lubricants on micropitting and wear. Tribol. Int. 41(11), 1049–1055 (2008)

    Article  Google Scholar 

  21. Lainé, E., Olver, A.V., Lekstrom, M.F., Shollock, B.A., Beveridge, T.A., Hua, D.Y.: The effect of a friction modifier additive on micropitting. Tribol. Trans. 52(4), 526–533 (2009)

    Article  Google Scholar 

  22. Morales-Espejel, G.E., Wemekamp, A.W.: An engineering approach on sliding friction in full-film, heavily loaded lubricated contacts. IMechE Part J J. Eng. Tribol. 218, 513–518 (2004)

    Article  Google Scholar 

  23. Morales-Espejel, G.E., Brizmer, V., Piras, E.: Roughness evolution in mixed lubrication condition due to mild wear. Proc. IMechE Part J J. Eng. Tribol. 229(11), 1330–1346 (2015)

    Article  Google Scholar 

  24. Hooke, C.H., Li, K.Y., Morales-Espejel, G.E.: Rapid calculation of the pressures and clearances in rough, rolling-sliding elastohydrodynamically lubricated contacts. Part 1: low-amplitude, sinusoidal roughness. Trib. 221, 535–550 (2006)

    Google Scholar 

  25. Hooke, C.H., Li, K.Y., Morales-Espejel, G.E.: Rapid calculation of the pressures and clearances in rough, rolling-sliding elastohydrodynamically lubricated contacts. Part 2: general, non-sinusoidal roughness. Proc. IMechE, Part J: J. of Eng. Tribol. 221, 551–564 (2006)

    Article  Google Scholar 

  26. Tripp, J.H., van Kuilenburg, J., Morales-Espejel, G.M., Lugt, P.M.: Frequency response functions and rough surface stress analysis. Tribol. Trans. 46(3), 376–382 (2003)

    Article  Google Scholar 

  27. Bos, J., Moes, H.: Frictional heating of tribological contacts. ASME J. Tribol. 117, 171–177 (1995)

    Article  Google Scholar 

  28. Tian, X., Kennedy, F.E.: Maximum and average flash temperatures in sliding contacts. ASME J. Tribol. 116, 167–174 (1994)

    Article  Google Scholar 

  29. Taylor, L.J., Spikes, H.A.: Friction-enhancing properties of ZDDP antiwear additive: part I—friction and morphology of ZDDP reaction films. Tribol. Trans. 46(3), 303–309 (2003)

    Article  Google Scholar 

  30. Ghanbarzadeh, A., Parsaeian, P., Morina, A., Wilson, M.C.T., van Eijk, M.C.P., Nedelcu, I., Dowson, D., Neville, A.: A semi-deterministic wear model considering the effect of zinc dialkyl dithiophosphate tribofilm. Tribol. Lett. 61, 12 (2016). doi:10.1007/s11249-015-0629-8

    Article  Google Scholar 

  31. Spikes, H.A.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Stefan Lammens, Director SKF Engineering Research Centre, for his kind permission to publish this article. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No. 612603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Brizmer.

Appendix

Appendix

List of operating conditions, material and lubricant properties in the MTM and MPR tests

Parameters

Description and units

MTM

MPR

H

Hardness of the steel, GPa

6.86

6.86

\(k_{\text{s}}\)

Thermal conductivity of steel, W m−1 K−1

50

50

\(p_{\text{o}}\)

Maximum Hertzian contact pressure, GPa

1.28

1.5

\(R_{\text{q1}}\)

R.m.s. roughness of the ball (MTM) or roller (MPR), nm

10–15

50

\(R_{\text{q2}}\)

R.m.s. roughness of the washer (MTM) or rings (MPR), nm

20–120

500

S

Slide-to-roll ratio, %

5

2

T

Temperature,  °C

40–110

40 and 90

U

Mean speed, m s−1

0.04–0.5

0.13 and 1.0

\(\alpha\)

Piezoviscosity coefficient, GPa−1

10

10

\(\eta\)

Dynamic viscosity of the lubricant at 40 °C/100 °C, mPa s

17/3.2

343/40

Λ

Lubrication quality parameter for film thickness

0.22–0.27

0.34–0.38

\(\tau_{0}\)

Eyring stress of the lubricant, MPa

3

3

\(\chi\)

Thermal diffusivity of steel, m2 s−1

1.34 × 10−5

1.34 × 10−5

  1. Identical values were used as input data in the model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizmer, V., Matta, C., Nedelcu, I. et al. The Influence of Tribolayer Formation on Tribological Performance of Rolling/Sliding Contacts. Tribol Lett 65, 57 (2017). https://doi.org/10.1007/s11249-017-0839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0839-3

Keywords

Navigation