Tribology Letters

, 65:20 | Cite as

The Role of Ferric Oxide Nanoparticles in Improving Lubricity and Tribo-Electrochemical Performance During Chemical–Mechanical Polishing

  • Vladimir Totolin
  • Hakan Göcerler
  • Manel Rodríguez Ripoll
  • Martin Jech
Original Paper
  • 172 Downloads

Abstract

The role of ferric oxide nanoparticles on the lubricating characteristics of passivating films formed on stainless steel (SS) was discussed in this study. The tribo-electrochemical behavior of mirror-like polished AISI 304 SS, used as an exemplary material, was evaluated in various electrolytes by means of a simulated chemical–mechanical polishing process in laboratory scale. It was clearly demonstrated that a suitable combination of abrasives (ferric oxide nanoparticles) and an oxidizer (nitric acid) can act as an effective lubricant that lowers the friction and wear of the AISI 304 SS surfaces. The excellent lubricating and anti-corrosion properties shown by a slurry containing a high content of ferric oxide nanoparticles at high nitric acid concentrations were attributed to the formation of a stable and robust passive film that was composed of chromium oxide and a mixture of iron oxides. The lack of ferric oxide nanoparticles in two solutions containing nitric acid of different concentrations led to pitting corrosion and abrasive wear. When low concentrations of both ferric oxide nanoparticles and nitric acid were used, wear-accelerated corrosion became the dominant mechanism that was caused by the presence of third-body wear particles in the contact zone.

Keywords

Ferric oxide nanoparticles Passive films Surface and interface mechanisms Tribocorrosion 

Notes

Acknowledgements

This work was funded by the Austrian COMET-Program (Project K2 XTribology, Grant No. 849109) and has been carried out within the Excellence Centre of Tribology. The authors would like to thank Christoph Gabler for performing the XPS analyses and Fjorda Xhiku for the topography measurements.

References

  1. 1.
    Landolt, D., Mischler, S., Stemp, M.: Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta 46, 3913–3929 (2001)CrossRefGoogle Scholar
  2. 2.
    Mischler, S., Ponthiaux, P.: A round robin on combined electrochemical and friction tests on alumina/stainless steel contacts in sulphuric acid. Wear 1–2, 211–225 (2001)CrossRefGoogle Scholar
  3. 3.
    Assi, F., Bohni, H.: Study of wear–corrosion synergy with a new microelectrochemical technique. Wear 233–235, 505–514 (1999)CrossRefGoogle Scholar
  4. 4.
    Watson, S.W., Friedersdorf, F.J., Madsen, B.W., Cramer, S.D.: Methods of measuring wear-corrosion synergism. Wear 181–183, 476–484 (1995)CrossRefGoogle Scholar
  5. 5.
    Fang, C.K., Huang, C.C., Chuang, T.H.: Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminium matrix composites. Metall. Mater. Trans. 30A, 643–651A (1999)CrossRefGoogle Scholar
  6. 6.
    Ponthiaux, P., Wenger, F., Drees, D., Celis, J.-P.: Electrochemical techniques for studying tribocorrosion processes. Wear 256, 459–468 (2004)CrossRefGoogle Scholar
  7. 7.
    Mischler, S.: Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol. Int. 41, 573–583 (2008)CrossRefGoogle Scholar
  8. 8.
    Wood, R.J.K.: Tribo-corrosion of coatings: a review. J. Phys. D Appl. Phys. 40, 5502–5521 (2007)CrossRefGoogle Scholar
  9. 9.
    Stack, M.M.: Mapping tribo-corrosion processes in dry and in aqueous conditions: some new directions for the new millennium. Tribol. Int. 35, 681–689 (2002)CrossRefGoogle Scholar
  10. 10.
    Rimbert, J.F., Pagetti, J.: Repassivation kinetics studies on an austenitic stainless steel in chloride media. Corros. Sci. 20(2), 189–210 (1980)CrossRefGoogle Scholar
  11. 11.
    Burstein, G.T., Marshall, P.I.: Growth of passivating films on scratched 304L stainless steel in alkaline solution. Corros. Sci. 23(2), 125–137 (1983)CrossRefGoogle Scholar
  12. 12.
    Burstein, G.T., Gao, G.: Verification of the validity of peak bare surface current densities obtained from the scratched electrode. J. Electrochem. Soc. 138(9), 2627–2630 (1991)CrossRefGoogle Scholar
  13. 13.
    Bastek, P., Newman, R., Kelly, R.: Measurement of passive film effects on scratched electrode behavior. J. Electrochem. Soc. 140, 1884–1889 (1993)CrossRefGoogle Scholar
  14. 14.
    Xiulin, J., Biao, H., Yixian, L., Shuqi, W.: Sliding tribocorrosion behavior of bulk metallic glass against bearing steel in 3.5% NaCl solution. Tribol. Int. 91, 214–220 (2015)CrossRefGoogle Scholar
  15. 15.
    Huttunen-Saarivirta, E., Kilpi, L., Hakala, T.J., Carpen, L., Ronkainen, H.: Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution. Tribol. Int. 95, 358–371 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, J., Wang, J., Yan, F., Zhang, Q., Li, Q.: Effect of applied potential on the tribocorrosion behaviors of Monel K500 alloy in artificial seawater. Tribol. Int. 81, 1–8 (2015)CrossRefGoogle Scholar
  17. 17.
    Hedayat, A., Yannacopoulos, S., Postlethwaite, J., Sangal, S.: Aqueous corrosion of plain carbon steel during sliding wear. Wear 154, 167–176 (1992)CrossRefGoogle Scholar
  18. 18.
    Totolin, V., Pejakovic, V., Csanyi, T., Hekele, O., Huber, M., Ripoll, M.R.: Surface engineering of Ti6Al4 V surfaces for enhanced tribocorrosion performance in artificial seawater. Mater. Des. 104, 10–18 (2016)Google Scholar
  19. 19.
    Wu, P., Celis, J.P.: Electrochemical noise measurements on stainless steel during corrosion-wear in sliding contacts. Wear 256, 480–490 (2004)CrossRefGoogle Scholar
  20. 20.
    Malfatti, C.F., Veit, H.M., Santos, C.B., Metzner, M., Hololeczek, H., Bonino, J.-P.: Heat treated NiP-SiC composite coatings: elaboration and tribocorrosion behaviour in NaCl solution. Tribol. Lett. 36, 165–173 (2009)CrossRefGoogle Scholar
  21. 21.
    Bazzoni, A., Mischler, S., Espallargas, N.: Tribocorrosion of pulsed plasma-nitrided CoCrMo implant alloy. Tribol. Lett. 49, 157–167 (2013)CrossRefGoogle Scholar
  22. 22.
    Yu, S.Y., Ishii, H., Chuang, T.H.: Corrosive wear of SiC whisker-and 6061 aluminum alloy composites particulate-reinforced. Metall. Mater. Trans. A 27A, 2653–2662 (1996)CrossRefGoogle Scholar
  23. 23.
    Salasi, M., Stachowiak, G., Stachowiak, G.: Tribo-electrochemical behaviour of 316L stainless steel: the effects of contact configuration, tangential speed, and wear mechanism. Corros. Sci. 98, 20–32 (2015)CrossRefGoogle Scholar
  24. 24.
    Salasi, M., Stachowiak, G., Stachowiak, G.: New experimental rig to investigate abrasive-corrosive characteristics of metals in aqueous media. Tribol. Lett. 40, 71–84 (2010)CrossRefGoogle Scholar
  25. 25.
    Sun, D., Wharton, J.A., Wood, R.J.K.: Abrasive size and concentration effects on the tribo-corrosion of cast CoCrMo alloy in simulated body fluids. Tribol. Int. 42, 1595–1604 (2009)CrossRefGoogle Scholar
  26. 26.
    Zu, J.B., Hutchings, I.M., Burstein, G.T.: Design of a slurry erosion test rig. Wear 140, 331–344 (1990)CrossRefGoogle Scholar
  27. 27.
    Barik, R.C., Wharton, J.A., Wood, R.J.K., Stokes, K.R.: Electro-mechanical interactions during erosion-corrosion. Wear 267, 1900–1908 (2009)CrossRefGoogle Scholar
  28. 28.
    Cheng, J., Wang, T., Chai, Z., Lu, X.: Tribocorrosion study of copper during chemical mechanical polishing in potassium periodate-based slurry. Tribol. Lett. 58, 8 (2015)CrossRefGoogle Scholar
  29. 29.
    Li, J., Chai, Z., Liu, Y., Lu, X.: Tribo-chemical behavior of copper in chemical mechanical planarization. Tribol. Lett. 50, 177–184 (2013)CrossRefGoogle Scholar
  30. 30.
    Zhao, D., Lu, X.: Chemical mechanical polishing: theory and experiment. Friction 1, 306–326 (2013)CrossRefGoogle Scholar
  31. 31.
    Kao, M.J., Hsu, F.C., Peng, D.X.: Synthesis and characterization of SiO2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Adv. Mater. Sci. Eng. (2014). doi: 10.1155/2014/691967 Google Scholar
  32. 32.
    Peng, D.-X.: Chemical mechanical polishing of steel substrate using aluminum nanoparticles abrasive slurry. Ind. Lubr. Tribol. 66, 124–130 (2014)CrossRefGoogle Scholar
  33. 33.
    Jiang, L., He, Y., Luo, J.: Chemical mechanical polishing of steel substrate using colloidal silica-based slurries. Appl. Surf. Sci. 330, 487–495 (2015)CrossRefGoogle Scholar
  34. 34.
    Hu, X., Song, Z., Liu, W., Qin, F., Zhang, Z., Wan, H.: Chemical mechanical polishing of stainless steel foil as flexible substrate. Appl. Surf. Sci. 258, 5798–5802 (2012)CrossRefGoogle Scholar
  35. 35.
    Yun, D.-J., Lim, S.-H., Lee, T.-W., Rhee, S.-W.: Fabrication of the flexible pentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate. Org. Electron. 10, 970–977 (2009)CrossRefGoogle Scholar
  36. 36.
    Stojadinovic, J., Mischler, S., Bouvet, D., Declercq, M.: Tribocorrosion of tungsten: effect of potential on wear. Tribol. Ind. 29, 41–44 (2007)Google Scholar
  37. 37.
    Gao, F., Liang, H.: Material removal mechanisms in electrochemical-mechanical polishing of tantalum. Electrochim. Acta 54, 6808–6815 (2009)CrossRefGoogle Scholar
  38. 38.
    Jang, K., Nam, E., Lee, C.-Y., Seok, J., Min, B.-K.: Mechanisms of synergistic material removal by electrochemical magnetorheological polishing. Int. J. Mach. Tools Manuf 70, 88–92 (2013)CrossRefGoogle Scholar
  39. 39.
    Totolin, V., Göcerler, H., Rodríguez Ripoll, M., Jech, M.: Tribo-electrochemical study of stainless steel surfaces during chemical-mechanical polishing. Lubr. Sci. 28, 363–380 (2016)CrossRefGoogle Scholar
  40. 40.
    Iida, S., Hidaka, Y.: Influence of the iron oxide layer on lubricating properties in seamless pipe hot rolling. Tetsu-to-Hagane 94, 244–250 (2008)CrossRefGoogle Scholar
  41. 41.
    Hu, Z.S., Dong, J.X., Chen, G.X.: Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31, 355–360 (1998)CrossRefGoogle Scholar
  42. 42.
    Inzelt, G.: Pseudo-reference electrodes, handbook of reference electrodes, pp. 331–332. Springer, Berlin (2013)CrossRefGoogle Scholar
  43. 43.
    Kasem, K., Jones, S.: Platinum as a reference electrode in electrochemical measurements. Platin. Met. Rev. 52, 100–106 (2008)CrossRefGoogle Scholar
  44. 44.
    Pejakovic, V., Totolin, V., Göcerler, H., Brenner, J., Rodriguez Ripoll, M.: Friction and wear behavior of selected titanium and zirconium based nitride coatings in Na2SO4 aqueous solution under low contact pressure. Tribol. Int. 91, 267–273 (2015)CrossRefGoogle Scholar
  45. 45.
    Beverskog, B., Puigdomenech, I.: Pourbaix diagrams for the ternary system of iron-chromium-nickel. Corrosion 55, 1077–1087 (1999)CrossRefGoogle Scholar
  46. 46.
    Bardwell, J.A., Sproule, G.I., MacDougall, B., Graham, M.J., Davenport, A.J., Isaacs, H.S.: In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J. Electrochem. Soc. 139, 371–373 (1992)CrossRefGoogle Scholar
  47. 47.
    Bojinov, M., Fabricius, G., Kinnunen, P., Laitinen, T., Makela, K., Saario, T., Sundholm, G.: The mechanism of transpassive dissolution of Ni–Cr alloys in sulphate solutions. Electrochim. Acta 45, 2791–2802 (2000)CrossRefGoogle Scholar
  48. 48.
    Schmuki, P., Virtanen, S., Isaacs, H.S., Ryan, M.R., Davenport, A.J., Bohni, H., Stenberge, T.: Electrochemical behaviour of Cr2O3/Fe2O3 artificial passive films studied by in situ XANES. J. Electrochem. Soc. 145, 791–801 (1998)CrossRefGoogle Scholar
  49. 49.
    Ningshen, S., Kamachi, M.U., Ramya, S., Raj, B.: Corrosion behavior of AISI type 304L stainless steel in nitric acid media containing oxidizing species. Corros. Sci. 53, 64–70 (2011)CrossRefGoogle Scholar
  50. 50.
    Evans, U.R.: The corrosion and oxidation of metals: scientific principles and practical applications. Edward Arnold, London (1960)Google Scholar
  51. 51.
    Fauvet, P., Balbaud, F., Robin, R., Tran, Q.T., Mugnier, A., Espinoux, D.: Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J. Nucl. Mater. 375, 52–64 (2008)CrossRefGoogle Scholar
  52. 52.
    Ningshen, S., Kamachi, M.U., Amarendra, G., Raj, B.: Corrosion assessment of nitric acid grade austenitic stainless steels. Corros. Sci. 51, 322–329 (2009)CrossRefGoogle Scholar
  53. 53.
    Godet, M.: 3rd-Bodies in tribology. Wear 136, 29–45 (1990)CrossRefGoogle Scholar
  54. 54.
    Landolt, D., Mischler, S., Stemp, M., Barril, S.: Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256, 517–524 (2004)CrossRefGoogle Scholar
  55. 55.
    Stachowiak, G.W., Batchelor, A.W.: Engineering tribology, 3rd edn. Elsevier Butterworth-Heinemann, Amsterdam (2005)Google Scholar
  56. 56.
    Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/hydroxides: a review. Int. J. Eng. Sci. Technol. 2, 127–146 (2010)Google Scholar
  57. 57.
    Lorang, G., Cunha Belo, M.D., Simoes, A.M.P., Ferreira, M.G.S.: Chemical composition of passive films on AISI 304 stainless steel. J. Electrochem. Soc. 141, 3347–3356 (1994)CrossRefGoogle Scholar
  58. 58.
    Husein, M.M., Zakaria, M.F., Hareland, G.: Use of nanoparticles as a lubricity additive in well fluids. WO Patent 2013116921 A1 (2013)Google Scholar
  59. 59.
    Freire, L., Catarino, M.A., Godinho, M.I., Ferreira, M.J., Ferreira, M.G.S., Simões, A.M.P., Montemor, M.F.: Electrochemical and analytical investigation of passive films formed on stainless steels in alkaline media. Cement Concr. Compos. 34, 1075–1081 (2012)CrossRefGoogle Scholar
  60. 60.
    Milanti, A., Koivuluoto, H., Vuoristo, P., Bolelli, G., Bozza, F., Lusvarghi, L.: Microstructural characteristics and tribological behavior of HVOF-sprayed novel Fe-based alloy coatings. Coatings 4, 98–120 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vladimir Totolin
    • 1
  • Hakan Göcerler
    • 1
  • Manel Rodríguez Ripoll
    • 1
  • Martin Jech
    • 1
  1. 1.AC2T research GmbHWiener NeustadtAustria

Personalised recommendations