Skip to main content
Log in

Investigation on Material Response to Ultrahigh Velocity Impact on Ceramics by Micro Particle

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The present study attempted to develop a 3D finite element (FE) model on the ultrahigh velocity impact process by micro particle. According to the change of particle kinetic energy before and after the impact, the impact efficiency was analyzed at different machining parameters. The stress distribution of target at different impact angle and impact velocity, various stress distribution of elements near the impact zone were investigated by the developed FE model. The ultrahigh velocity impact on alumina ceramics by micro particle was also examined experimentally. The predicted craters volumes and depths were in accord with experimental results. The developed FE model associated with experiments is an appropriate method to study the ultrahigh velocity impact process and material removal mechanism by micro particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ali, Y., Wang, J.: Impact abrasive machining (Chapter 9). In: Jackson, M.J., Davim, J.P. (eds.) Machining with Abrasives. Springer, New York (2011)

    Google Scholar 

  2. Axinte, D.A., Karpuschewski, B., Kong, M.C., Beaucamp, A.T., Anwar, S., Miller, D., Petzel, M.: High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications. CIRP Ann. Manuf. Technol. 63(2), 751–771 (2014)

    Article  Google Scholar 

  3. Liu, D., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.: Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceram. Int. 40(6), 7899–7908 (2014)

    Article  Google Scholar 

  4. Finnie, I.: Erosion of surfaces by solid particles. Wear 3(2), 87–103 (1960)

    Article  Google Scholar 

  5. Bitter, J.G.A.: A study of erosion phenomena: Part I. Wear 6(1), 5–21 (1963)

    Article  Google Scholar 

  6. Bitter, J.G.A.: A study of erosion phenomena: Part II. Wear 6(3), 169–190 (1963)

    Article  Google Scholar 

  7. Ćurković, L., Kumić, I., Grilec, K.: Solid particle erosion behaviour of high purity alumina ceramics. Ceram. Int. 37(1), 29–35 (2011)

    Article  Google Scholar 

  8. Qi, H., Fan, J., Wang, J., Li, H.: Impact erosion by high velocity micro-particles on a quartz crystal. Tribol. Int. 82, 200–210 (2015)

    Article  Google Scholar 

  9. Qi, H., Fan, J., Wang, J., Li, H.: On the erosion process on quartz crystals by the impact of multiple high-velocity micro-particles. Tribol. Int. 95, 462–474 (2016)

    Article  Google Scholar 

  10. ElTobgy, M.S., Ng, E., Elbestawi, M.A.: Finite element modeling of erosive wear. Int. J. Mach. Tools Manuf 45(11), 1337–1346 (2005)

    Article  Google Scholar 

  11. Wang, Y., Yang, Z.: Finite element model of erosive wear on ductile and brittle materials. Wear 265(5), 871–878 (2008)

    Article  Google Scholar 

  12. Gudimetla, P., Yarlagadda, P.K.D.V.: Finite element analysis of the interaction between an AWJ particle and a polycrystalline alumina ceramic. J. Achiev. Mater. Manuf. Eng. 23(1), 7–14 (2007)

    Google Scholar 

  13. Ismail, J., Zaïri, F., Naït-Abdelaziz, M., Bouzid, S., Azari, Z.: Experimental and numerical investigations on erosion damage in glass by impact of small-sized particles. Wear 271(5), 817–826 (2011)

    Article  Google Scholar 

  14. Li, W., Wang, J., Zhu, H., Li, H., Huang, C.: On ultrahigh velocity micro-particle impact on steels-a single impact study. Wear 305(1–2), 216–227 (2013)

    Article  Google Scholar 

  15. Li, W., Wang, J., Zhu, H., Huang, C.: On ultrahigh velocity micro-particle impact on steels—a multiple impact study. Wear 309(1–2), 52–64 (2014)

    Article  Google Scholar 

  16. Momber, A.W., Kovacevic, R.: Principles of abrasive water jet machining. Springer, Texas (1997)

    Google Scholar 

  17. Hashish, M.: Pressure effects in abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. ASME 111(3), 221–228 (1989)

    Article  Google Scholar 

  18. Johnson, G.R., Holmquist, T.J.: An improved computational constitutive model for brittle materials. In: Schmidt, S.C., Shaner, J.W., Samara, G.A., Ross, M. (eds.) High-Pressure Science and Technology. AIP Publishing, New York (1994)

    Google Scholar 

  19. Cronin, D.S., Bui, K., Kaufmann, C., McIntosh, G., Berstad, T., Cronin, D.: Implementation and validation of the Johnson–Holmquist ceramic material model in LS-DYNA. In: Proceedings of 4th European LS-DYNA Users Conference, Ulm (2003)

  20. Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation, Livermore (2006)

    Google Scholar 

  21. Krashanitsa, R., Shkarayev, S.: Computational study of dynamic response and flow behavior of damaged ceramics. In: Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin (2005)

  22. Anwar, S., Axinte, D.A., Becker, A.A.: Finite element modelling of abrasive waterjet milled footprints. J. Mater. Proc. Technol. 213(2), 180–193 (2013)

    Article  Google Scholar 

  23. Meo, M., Vignjevic, R.: Finite element analysis of residual stress induced by shot peening process. Adv. Eng. Softw. 34(9), 569–575 (2003)

    Article  Google Scholar 

  24. Lian, X.: Experimental study and finite element simulation on solid particle erosion wear of alumina based refractories. Ph.D thesis (2013) (in Chinese)

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (51175307, 51375273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Huang, C., Zhu, H. et al. Investigation on Material Response to Ultrahigh Velocity Impact on Ceramics by Micro Particle. Tribol Lett 64, 43 (2016). https://doi.org/10.1007/s11249-016-0779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0779-3

Keywords

Navigation