Abstract
Molybdenum disulfide (MoS2) nanoflakes, nanotubes, and nanoparticles are used as solid lubricants and oil additives. We investigate the formation of transfer layers due to fracture during sliding on commercially available MoS2 nanoflakes. The sliding and fracture properties were observed in high-frame-rate videos and high-resolution images captured using in situ transmission electron microscopy. The orientation of the flakes and the adhesion to the surface and to the contact asperity determined the weakest interface, which subsequently determined the fracture transfer layer. The fracture continued until both surface and counter surface lubricant layers were a single sheet. The fractured material created a transfer layer or wear particles. We did not observe the proposed “deck-of-cards” sliding, where the sliding is distributed between all the layers of a MoS2 flake. Instead, we captured video of an entire flake fracturing at a weak point in the MoS2 sheets, a “weakest link” soft interface fracture model. The soft interface fracture transfer (SIFT) model is not specific to MoS2-layered nanoflakes, and we argue it is a general mechanism in the formation of tribolayers.
This is a preview of subscription content,
to check access.







References
Conley, P.L.: Space Vehicle Mechanisms: Elements of Successful Design. Wiley, New York (1998)
Voevodin, A., Zabinski, J.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65(5), 741–748 (2005). doi:10.1016/j.compscitech.2004.10.008
Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014). doi:10.1016/j.wear.2014.09.001
Singer, I.L.: Mechanics and chemistry of solids in sliding contact. Langmuir 12(19), 4486–4491 (1996). doi:10.1021/la951056n
Bowden, F., Tabor, D.: Friction and Lubrication of Solids, vol. I. Clarendon, Oxford (1950)
Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2013). doi:10.1007/s10853-012-7038-2
Holmberg, K., Matthews, A.: Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering. Elsevier, Amsterdam (2009)
Sliney, H.E.: Solid lubricant materials for high temperatures—a review. Tribol. Int. 15(5), 303–315 (1982). doi:10.1016/0301-679x(82)90089-5
Singer, I.L., Pollock, H.: Fundamentals of Friction: Macroscopic and Microscopic Processes, vol. 220. Springer, Braunlage (2012)
Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol., A 21(5), S232–S240 (2003). doi:10.1116/1.1599869
Onodera, T., Morita, Y., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Kubo, M., Martin, J.M., Miyamoto, A.: A computational chemistry study on friction of h-MoS(2). Part II. Friction anisotropy. J Phys Chem B 114(48), 15832–15838 (2010). doi:10.1021/jp1064775
Ribarsky, M.W., Landman, U.: Microscopic mechanisms of tribological and wear processes: molecular dynamics simulations. In: Approaches to Modeling of Friction and Wear: Proceedings of the Workshop on the Use of Surface Deformation Models to Predict Tribology Behavior, Columbia University in the City of New York, 17–19 December 1986. pp. 159–166. Springer, New York (1988)
Godet, M.: The third-body approach: a mechanical view of wear. Wear 100(1–3), 437–452 (1984). doi:10.1016/0043-1648(84)90025-5
Singer, I.L., Fayeulle, S., Ehni, P.D.: Friction and wear behavior of tin in air—the chemistry of transfer films and debris formation. Wear 149(1–2), 375–394 (1991). doi:10.1016/0043-1648(91)90386-9
Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230(2), 175–183 (1999). doi:10.1016/s0043-1648(99)00100-3
Hu, J.J., Wheeler, R., Zabinski, J.S., Shade, P.A., Shiveley, A., Voevodin, A.A.: Transmission electron microscopy analysis of Mo–W–S–Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer. Tribol. Lett. 32(1), 49–57 (2008). doi:10.1007/s11249-008-9360-z
Fleischauer, P.D., Bauer, R.: The influence of surface chemistry on MoS2 transfer film formation. ASLE Trans. 30(2), 160–166 (1987)
Miyoshi, K., Chung, Y.: Surface Diagnostics in Tribology: Fundamental Principles and Applications. World Scientific, Singapore (1993)
Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33(12), 1145–1150 (2008)
Marks, L.D., Warren, O.L., Minor, A.M., Merkle, A.P.: Tribology in full view. MRS Bull. 33(12), 1168–1173 (2008). doi:10.1557/mrs2008.247
Liao, Y., Marks, L.: In situ single asperity wear at the nanometre scale. Int. Mater. Rev. (In production) (2016)
Casillas, G., Liao, Y., Jose-Yacaman, M., Marks, L.D.: Monolayer transfer layers during sliding at the atomic scale. Tribol. Lett. 59(3), 1–5 (2015). doi:10.1007/s11249-015-0563-9
Oviedo, J.P., Kc, S., Lu, N., Wang, J., Cho, K., Wallace, R.M., Kim, M.J.: In situ TEM characterization of shear–stress-induced interlayer sliding in the cross section view of molybdenum disulfide. ACS Nano 9(2), 1543–1551 (2015). doi:10.1021/nn506052d
Castellanos-Gomez, A., Poot, M., Steele, G.A., van der Zant, H.S., Agrait, N., Rubio-Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772–775 (2012). doi:10.1002/adma.201103965
Casillas, G., Santiago, U., Barrón, H.C., Alducin, D., Ponce, A., José-Yacamán, M.: Elasticity of MoS2 Sheets by mechanical deformation observed by in situ electron microscopy. J. Phys. Chem. C 119(1), 710–715 (2014)
Tang, D.M., Kvashnin, D.G., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P.M., Yakobson, B.I., Sorokin, P.B., Lou, J., Golberg, D.: Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat Commun. 5, 3631 (2014). doi:10.1038/ncomms4631
Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42(2), 133–140 (2011). doi:10.1007/s11249-011-9755-0
Lahouij, I., Vacher, B., Dassenoy, F.: Direct observation by in situ transmission electron microscopy of the behaviour of IF-MoS2 nanoparticles during sliding tests: influence of the crystal structure. Lubr. Sci. 26(3), 163–173 (2014)
Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhacs, A., Tremel, W.: Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribol. Lett. 41(1), 55–64 (2011). doi:10.1007/s11249-010-9678-1
Singer, I.L.: How third-body processes affect friction and wear. MRS Bull. 23(6), 37–40 (1998). doi:10.1557/S088376940003061X
Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid–solid contacts. MRS Bull. 33(12), 1159–1167 (2011). doi:10.1557/mrs2008.246
Hilton, M.R., Fleischauer, P.D.: Structural studies of sputter-deposited MoS2 solid lubricant films. In: MRS Proceedings 1988, p. 227. Cambridge University Press, Cambridge
Hilton, M.R., Fleischauer, P.D.: TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films. J. Mater. Res. 5(02), 406–421 (1990)
Fleischauer, P.D., Bauer, R.: Chemical and structural effects on the lubrication properties of sputtered MoS2 films. Tribol. Trans. 31(2), 239–250 (1988)
Nafari, A., Karlen, D., Rusu, C., Svensson, K., Olin, H., Enoksson, P.: MEMS sensor for in situ TEM atomic force microscopy. J. Microelectromech. Syst. 17(2), 328–333 (2008). doi:10.1109/jmems.2007.912714
Bhushan, B.: Modern Tribology Handbook, Two Volume Set. CRC Press (2000)
Acknowledgments
This work was funded by the NSF under the Grant Number CMMI-1030703. EEH is funded through the National Defense Science and Engineering Graduate Fellowship. Portions of this work were performed in the Electron Microscopy Center of the Center for Nanoscale Materials at Argonne National Laboratory, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
11249_2016_743_MOESM2_ESM.mp4
Online Resource 2 Video of Fig. 3b showing SIFT fracture (first half) and Fig. 7 showing evolving soft interface contact (second half). Also video of Fig. 8a, b (MP4 11,111 kb)
11249_2016_743_MOESM3_ESM.mp4
Online Resource 3 Video of Fig. 3c and Fig. 6a–c showing SIFT and transfer layer shown in Online Resource 5 (MP4 7,666 kb)
Online Resource 5 Video of Fig. 6d showing the transfer flake after Online Resource 3 (MP4 2,415 kb)
11249_2016_743_MOESM6_ESM.mp4
Online Resource 6 Video of Fig. 8c showing the soft interface fracture of partial flakes and sheets during piezo sliding (MP4 7,916 kb)
11249_2016_743_MOESM7_ESM.mp4
Online Resource 7 Video of Fig. 8d, e showing the soft interface fracture of the partial flake from the bottom flake from coarse sliding (MP4 4,032 kb)
Rights and permissions
About this article
Cite this article
Hoffman, E.E., Marks, L.D. Soft Interface Fracture Transfer in Nanoscale MoS2 . Tribol Lett 64, 16 (2016). https://doi.org/10.1007/s11249-016-0743-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11249-016-0743-2