Skip to main content
Log in

Soft Interface Fracture Transfer in Nanoscale MoS2

Tribology Letters Aims and scope Submit manuscript

Cite this article

Abstract

Molybdenum disulfide (MoS2) nanoflakes, nanotubes, and nanoparticles are used as solid lubricants and oil additives. We investigate the formation of transfer layers due to fracture during sliding on commercially available MoS2 nanoflakes. The sliding and fracture properties were observed in high-frame-rate videos and high-resolution images captured using in situ transmission electron microscopy. The orientation of the flakes and the adhesion to the surface and to the contact asperity determined the weakest interface, which subsequently determined the fracture transfer layer. The fracture continued until both surface and counter surface lubricant layers were a single sheet. The fractured material created a transfer layer or wear particles. We did not observe the proposed “deck-of-cards” sliding, where the sliding is distributed between all the layers of a MoS2 flake. Instead, we captured video of an entire flake fracturing at a weak point in the MoS2 sheets, a “weakest link” soft interface fracture model. The soft interface fracture transfer (SIFT) model is not specific to MoS2-layered nanoflakes, and we argue it is a general mechanism in the formation of tribolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Conley, P.L.: Space Vehicle Mechanisms: Elements of Successful Design. Wiley, New York (1998)

    Google Scholar 

  2. Voevodin, A., Zabinski, J.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65(5), 741–748 (2005). doi:10.1016/j.compscitech.2004.10.008

    Google Scholar 

  3. Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014). doi:10.1016/j.wear.2014.09.001

    Article  Google Scholar 

  4. Singer, I.L.: Mechanics and chemistry of solids in sliding contact. Langmuir 12(19), 4486–4491 (1996). doi:10.1021/la951056n

    Article  Google Scholar 

  5. Bowden, F., Tabor, D.: Friction and Lubrication of Solids, vol. I. Clarendon, Oxford (1950)

    Google Scholar 

  6. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2013). doi:10.1007/s10853-012-7038-2

    Article  Google Scholar 

  7. Holmberg, K., Matthews, A.: Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering. Elsevier, Amsterdam (2009)

    Google Scholar 

  8. Sliney, H.E.: Solid lubricant materials for high temperatures—a review. Tribol. Int. 15(5), 303–315 (1982). doi:10.1016/0301-679x(82)90089-5

    Article  Google Scholar 

  9. Singer, I.L., Pollock, H.: Fundamentals of Friction: Macroscopic and Microscopic Processes, vol. 220. Springer, Braunlage (2012)

    Google Scholar 

  10. Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol., A 21(5), S232–S240 (2003). doi:10.1116/1.1599869

    Article  Google Scholar 

  11. Onodera, T., Morita, Y., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Kubo, M., Martin, J.M., Miyamoto, A.: A computational chemistry study on friction of h-MoS(2). Part II. Friction anisotropy. J Phys Chem B 114(48), 15832–15838 (2010). doi:10.1021/jp1064775

    Article  Google Scholar 

  12. Ribarsky, M.W., Landman, U.: Microscopic mechanisms of tribological and wear processes: molecular dynamics simulations. In: Approaches to Modeling of Friction and Wear: Proceedings of the Workshop on the Use of Surface Deformation Models to Predict Tribology Behavior, Columbia University in the City of New York, 17–19 December 1986. pp. 159–166. Springer, New York (1988)

  13. Godet, M.: The third-body approach: a mechanical view of wear. Wear 100(1–3), 437–452 (1984). doi:10.1016/0043-1648(84)90025-5

    Article  Google Scholar 

  14. Singer, I.L., Fayeulle, S., Ehni, P.D.: Friction and wear behavior of tin in air—the chemistry of transfer films and debris formation. Wear 149(1–2), 375–394 (1991). doi:10.1016/0043-1648(91)90386-9

    Article  Google Scholar 

  15. Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230(2), 175–183 (1999). doi:10.1016/s0043-1648(99)00100-3

    Article  Google Scholar 

  16. Hu, J.J., Wheeler, R., Zabinski, J.S., Shade, P.A., Shiveley, A., Voevodin, A.A.: Transmission electron microscopy analysis of Mo–W–S–Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer. Tribol. Lett. 32(1), 49–57 (2008). doi:10.1007/s11249-008-9360-z

    Article  Google Scholar 

  17. Fleischauer, P.D., Bauer, R.: The influence of surface chemistry on MoS2 transfer film formation. ASLE Trans. 30(2), 160–166 (1987)

    Article  Google Scholar 

  18. Miyoshi, K., Chung, Y.: Surface Diagnostics in Tribology: Fundamental Principles and Applications. World Scientific, Singapore (1993)

    Book  Google Scholar 

  19. Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33(12), 1145–1150 (2008)

    Article  Google Scholar 

  20. Marks, L.D., Warren, O.L., Minor, A.M., Merkle, A.P.: Tribology in full view. MRS Bull. 33(12), 1168–1173 (2008). doi:10.1557/mrs2008.247

    Article  Google Scholar 

  21. Liao, Y., Marks, L.: In situ single asperity wear at the nanometre scale. Int. Mater. Rev. (In production) (2016)

  22. Casillas, G., Liao, Y., Jose-Yacaman, M., Marks, L.D.: Monolayer transfer layers during sliding at the atomic scale. Tribol. Lett. 59(3), 1–5 (2015). doi:10.1007/s11249-015-0563-9

    Article  Google Scholar 

  23. Oviedo, J.P., Kc, S., Lu, N., Wang, J., Cho, K., Wallace, R.M., Kim, M.J.: In situ TEM characterization of shear–stress-induced interlayer sliding in the cross section view of molybdenum disulfide. ACS Nano 9(2), 1543–1551 (2015). doi:10.1021/nn506052d

    Article  Google Scholar 

  24. Castellanos-Gomez, A., Poot, M., Steele, G.A., van der Zant, H.S., Agrait, N., Rubio-Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772–775 (2012). doi:10.1002/adma.201103965

    Article  Google Scholar 

  25. Casillas, G., Santiago, U., Barrón, H.C., Alducin, D., Ponce, A., José-Yacamán, M.: Elasticity of MoS2 Sheets by mechanical deformation observed by in situ electron microscopy. J. Phys. Chem. C 119(1), 710–715 (2014)

    Article  Google Scholar 

  26. Tang, D.M., Kvashnin, D.G., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P.M., Yakobson, B.I., Sorokin, P.B., Lou, J., Golberg, D.: Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat Commun. 5, 3631 (2014). doi:10.1038/ncomms4631

    Google Scholar 

  27. Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42(2), 133–140 (2011). doi:10.1007/s11249-011-9755-0

    Article  Google Scholar 

  28. Lahouij, I., Vacher, B., Dassenoy, F.: Direct observation by in situ transmission electron microscopy of the behaviour of IF-MoS2 nanoparticles during sliding tests: influence of the crystal structure. Lubr. Sci. 26(3), 163–173 (2014)

    Article  Google Scholar 

  29. Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhacs, A., Tremel, W.: Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribol. Lett. 41(1), 55–64 (2011). doi:10.1007/s11249-010-9678-1

    Article  Google Scholar 

  30. Singer, I.L.: How third-body processes affect friction and wear. MRS Bull. 23(6), 37–40 (1998). doi:10.1557/S088376940003061X

    Article  Google Scholar 

  31. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid–solid contacts. MRS Bull. 33(12), 1159–1167 (2011). doi:10.1557/mrs2008.246

    Article  Google Scholar 

  32. Hilton, M.R., Fleischauer, P.D.: Structural studies of sputter-deposited MoS2 solid lubricant films. In: MRS Proceedings 1988, p. 227. Cambridge University Press, Cambridge

  33. Hilton, M.R., Fleischauer, P.D.: TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films. J. Mater. Res. 5(02), 406–421 (1990)

    Article  Google Scholar 

  34. Fleischauer, P.D., Bauer, R.: Chemical and structural effects on the lubrication properties of sputtered MoS2 films. Tribol. Trans. 31(2), 239–250 (1988)

    Article  Google Scholar 

  35. Nafari, A., Karlen, D., Rusu, C., Svensson, K., Olin, H., Enoksson, P.: MEMS sensor for in situ TEM atomic force microscopy. J. Microelectromech. Syst. 17(2), 328–333 (2008). doi:10.1109/jmems.2007.912714

    Article  Google Scholar 

  36. Bhushan, B.: Modern Tribology Handbook, Two Volume Set. CRC Press (2000)

Download references

Acknowledgments

This work was funded by the NSF under the Grant Number CMMI-1030703. EEH is funded through the National Defense Science and Engineering Graduate Fellowship. Portions of this work were performed in the Electron Microscopy Center of the Center for Nanoscale Materials at Argonne National Laboratory, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence D. Marks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 Video of Fig. 3a showing SIFT fracture (MP4 8,216 kb)

11249_2016_743_MOESM2_ESM.mp4

Online Resource 2 Video of Fig. 3b showing SIFT fracture (first half) and Fig. 7 showing evolving soft interface contact (second half). Also video of Fig. 8a, b (MP4 11,111 kb)

11249_2016_743_MOESM3_ESM.mp4

Online Resource 3 Video of Fig. 3c and Fig. 6a–c showing SIFT and transfer layer shown in Online Resource 5 (MP4 7,666 kb)

Online Resource 4 Video of Fig. 4 and Fig. 5 of a rolling flake (MP4 2,936 kb)

Online Resource 5 Video of Fig. 6d showing the transfer flake after Online Resource 3 (MP4 2,415 kb)

11249_2016_743_MOESM6_ESM.mp4

Online Resource 6 Video of Fig. 8c showing the soft interface fracture of partial flakes and sheets during piezo sliding (MP4 7,916 kb)

11249_2016_743_MOESM7_ESM.mp4

Online Resource 7 Video of Fig. 8d, e showing the soft interface fracture of the partial flake from the bottom flake from coarse sliding (MP4 4,032 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, E.E., Marks, L.D. Soft Interface Fracture Transfer in Nanoscale MoS2 . Tribol Lett 64, 16 (2016). https://doi.org/10.1007/s11249-016-0743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0743-2

Keywords

Navigation