Skip to main content
Log in

Real-Contact Area Between an Elastomer and a Flat Plane Observed by Surface Plasmon Resonance: Optical Model Calculations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This study presents a novel method for high-sensitivity measurement of the area of the real contact between an elastomer surface and a rigid flat plane, using the surface plasmon resonance (SPR) technique in the Kretschmann configuration. Through numerical calculations, the sensitivity of the SPR method for determining the real-contact area is discussed and compared to other typical optical techniques, such as total internal reflection and multiple beam optical interference. The wavelength dependence of the optical reflectance is simulated, as well as its change with the elastomer-plane gap thickness and the optical properties of the gap material. Non-transparent elastomers are also studied. Consequently, it was found that the SPR method has the highest sensitivity for the measurement of real-contact area; it can detect, for example, an ultra-thin air gap (or water gap) formed between the contacting surfaces from the measurement of the intensity of reflected light from the contact region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

E in :

Amplitude of the incident light electric field

E out :

Amplitude of the reflected light electric field

E + :

Resultant electric vector of all positive-going light waves

E :

Resultant electric vector of all negative-going light waves

N :

Complex refractive index

R :

Reflectance

ΔR :

Difference in reflectance

h :

Gap thickness

h max :

Maximum gap thickness

l d :

Characteristic decay length of evanescent electromagnetic field

m :

Sensitivity factor

n :

Refractive index

n eff :

Effective refractive index

Δn eff :

Difference in effective refractive index

r eff :

Effective reflection coefficient

r :

Fresnel reflection coefficient

k :

Extinction coefficient

β :

Phase change

θ :

Incident angle

λ :

Wavelength

λ SPR :

Resonance wavelength in the reflectance spectrum in the SPR method

λ OIF :

Peak wavelength in the reflectance spectrum in the OIF method

References

  1. Liang, X., Linquing, Z.: A new method for the experimental investigation of contact in mixed lubrication. Matter 132, 221–233 (1989)

    Google Scholar 

  2. Eguchi, M., Shibamiya, T., Yamamoto, T.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Matter 20, 015004 (2008)

    Article  Google Scholar 

  3. Eguchi, M., Shibamiya, T., Yamamoto, T.: Measurement of real contact area and analysis of stick/slip region. Tribol. Int. 42, 1781–1791 (2009)

    Article  Google Scholar 

  4. Soneda, T., Nakano, K.: Investigation of vibrotactile sensation of human fingerpads by observation of contact zones. Tribol. Int. 43, 210–217 (2010)

    Article  Google Scholar 

  5. Krick, B.A., Hahn, D.W., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding friction. Tribol. Lett. 45, 185–194 (2012)

    Article  Google Scholar 

  6. Nitta, I., Tsukiyama, Y., Tsukada, T., Terao, H.: Measurement of real contact area on thermal print head using a laser microscope with a wide field of view. Tribol. Int. 79, 162–173 (2014)

    Article  Google Scholar 

  7. Eason, E.V., Hawkes, E.W., Windheim, M., Christensen, D.L., Libby, T., Cutkosky, M.R.: Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor. Bioinspir. Biomim. 10, 016013 (2015)

    Article  Google Scholar 

  8. Matsuda, K., Hashimoto, D., Nakamura, K.: Real contact area and friction property of rubber with two-dimensional regular wavy surface. Tribol. Int. 93, 523–529 (2016)

    Article  Google Scholar 

  9. Holm, R.: Electric Contacts Handbook. Springer, Berlin (1958)

    Google Scholar 

  10. Nakano, K., Akiyama, Y.: Simultaneous measurement of thickness and coverage of loaded boundary films with complex impedance analysis. Tribol. Lett. 22, 127–134 (2006)

    Article  Google Scholar 

  11. Manabe, K., Nakano, K.: Breakdown of oil films and formation of residual films. Tribol. Int. 41, 1103–1113 (2008)

    Article  Google Scholar 

  12. Dwyer-Joyce, R.S., Reddyhoff, T., Drinkwater, B.W.: Operating limits for acoustic measurement of rolling bearing oil film thickness. Tribol. Trans. 47, 127–134 (2004)

    Article  Google Scholar 

  13. Dwyer-Joyce, R.S., Reddyhoff, T., Zhu, J.: Ultrasonic measurement for film thickness and solid contact in elastohydrodynamic lubrication. J. Tribol. 133, 031501 (2011)

    Article  Google Scholar 

  14. Rubinstein, S.M., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  Google Scholar 

  15. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313–323 (2010)

    Article  Google Scholar 

  16. Schallamach, A.: How does rubber slide? Wear 17, 301–302 (1971)

    Article  Google Scholar 

  17. Maegawa, S., Nakano, K.: Mechanism of stick-slip associated with Schallamach waves. Wear 268, 924–930 (2010)

    Article  Google Scholar 

  18. Maegawa, S., Itoigawa, F., Nakamura, T.: Dynamics in sliding friction of soft adhesive elastomer: Schallamach waves as a stress-relaxation mechanism. Tribol. Int. 96, 23–30 (2016)

    Article  Google Scholar 

  19. Maegawa, S., Yamaguchi, J., Itoigawa, F., Nakamura, T.: Discussion on surface plasmon resonance technique in the Otto configuration for measurement of lubricant film thickness. Tribol. Lett. 62, 14 (2016)

    Article  Google Scholar 

  20. Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)

    Article  Google Scholar 

  21. Kretschmann, E.: The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313–324 (1971)

    Article  Google Scholar 

  22. Raether, H.: Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin (1988)

    Google Scholar 

  23. Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N.: Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14, 5636–5648 (1998)

    Article  Google Scholar 

  24. Heavens, O.S.: Optical Properties of Thin Solid Films. Dover Publications, New York (1991)

    Google Scholar 

  25. Born, M., Wolf, E.: Principle of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  26. Macleod, H.A.: Thin-film Optical Filters, 3rd edn. Institute of Physics Publishing, Bristol (2001)

    Book  Google Scholar 

  27. Fu, Z., Guo, F., Wong, P.L.: Theoretical study on the interferometry of thin EHL film measurement. Tribol. Lett. 31, 57–65 (2008)

    Article  Google Scholar 

  28. http://www.filmetricsinc.jp/refractive-index-database/

  29. Cudek, V., Krupka, I., Hartl, M.L.: Application of spectroscopic reflectometry to elastohydrodynamic lubrication film study. Tribol. Lett. 45, 195–205 (2012)

    Article  Google Scholar 

  30. Maegawa, S., Koseki, A., Itoigawa, F., Nakamura, T.: In situ observation of adsorbed fatty acid films under shearing condition using surface plasmon resonance. Tribol. Int. 97, 228–233 (2016)

    Article  Google Scholar 

  31. Haeussling, L., Ringsdorf, H., Schmitt, F.J., Knoll, W.: Biotin-functionalized self-assembled monolayers on gold: surface plasmon optical studies of specific recognition reactions. Langmuir 7, 1837–1840 (1991)

    Article  Google Scholar 

  32. Peterlinz, K.P., Georgiadis, R.C.: Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy. Opt. Commun. 130, 260–266 (1996)

    Article  Google Scholar 

  33. Bruijn, H.E.B., Altenburg, B.S.F., Kooyman, R.P.H., Greve, J.: Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance. Opt. Commun. 82, 425–432 (1991)

    Article  Google Scholar 

  34. Le Ru, E.C., Etchegoin, P.G.: Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, Amsterdam (2009)

    Google Scholar 

  35. Westphal, P., Bornmann, A.: Biomolecular detection by surface plasmon enhanced ellipsometry. Sens. Actuators B 84, 278–282 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Maegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maegawa, S., Matsuoka, H., Fukui, S. et al. Real-Contact Area Between an Elastomer and a Flat Plane Observed by Surface Plasmon Resonance: Optical Model Calculations. Tribol Lett 64, 7 (2016). https://doi.org/10.1007/s11249-016-0739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0739-y

Keywords

Navigation