Skip to main content
Log in

Novel Experiments Reveal Scratching and Transfer Film Mechanisms in the Sliding of the PEEK/Steel Tribosystem

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In order to reveal fundamental tribological mechanisms in polymer/steel sliding pairs, the pin-on-flat configuration of classical macroscopic tribotests was transferred into a high-resolution tribometer designed for scratch tests. Experiments were performed with a polyetheretherketone (PEEK) pin sliding on a steel disk in straight unidirectional movement mode. The surface morphology was monitored by interrupting the tests every 10,000 sliding strokes. The evolving surface morphology of PEEK was correlated with the transfer layer formed on steel counter surface. Scratching grooves in the PEEK surface were induced by asperities at the counter steel surface covered with transfer layers. Transfer layers were composed of lumpy polymer material accompanied by fine wear debris in areas of lower roughness. These smooth areas limit the penetration of large asperities and distinguish the scratching mechanism in macroscopic sliding from typical single-asperity scratching tests. The results reveal the mechanisms leading to inhomogeneity in the transfer layers as consequence of the asperity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiong, D., Xiong, L., Liu, L.: Preparation and tribological properties of polyetheretherketone composites. J. Biomed. Mater. Res. B Appl. Biomater. 93B(2), 492–496 (2010). doi:10.1002/jbm.b.31607

    Article  Google Scholar 

  2. Li, D., Xie, Y., Li, W., You, Y., Deng, X.: Tribological and mechanical behaviors of polyamide 6/glass fiber composite filled with various solid lubricants. Sci. World J. 2013, 9 (2013). doi:10.1155/2013/320837

    Google Scholar 

  3. Yu, L., Yang, S., Liu, W., Xue, Q.: An investigation of the friction and wear behaviors of polyphenylene sulfide filled with solid lubricants. Polym. Eng. Sci. 40(8), 1825–1832 (2000). doi:10.1002/pen.11314

    Article  Google Scholar 

  4. Abdelbary, A.: Wear of Polymers and Composites. Woodhead Publishing, Cambridge (2015)

    Google Scholar 

  5. Aldousiri, B., Shalwan, A., Chin, C.W.: A review on tribological behaviour of polymeric composites and future reinforcements. Adv. Mater. Sci. Eng. 2013, 8 (2013). doi:10.1155/2013/645923

    Google Scholar 

  6. Onodera, T., Park, M., Souma, K., Ozawa, N., Kubo, M.: Transfer-film formation mechanism of polytetrafluoroethylene: a computational chemistry approach. J. Phys. Chem. C 117(20), 10464–10472 (2013). doi:10.1021/jp400515j

    Article  Google Scholar 

  7. Nunez, E.E., Polycarpou, A.A.: The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 326–327, 74–83 (2015). doi:10.1016/j.wear.2014.12.049

    Article  Google Scholar 

  8. Rzatki, F.D., Barboza, D.V.D., Schroeder, R.M., Barra, GMdO, Binder, C., Klein, A.N., de Mello, J.D.B.: Effect of surface finishing, temperature and chemical ageing on the tribological behaviour of a polyether ether ketone composite/52100 pair. Wear 332–333, 844–854 (2015). doi:10.1016/j.wear.2014.12.035

    Article  Google Scholar 

  9. Bahadur, S., Schwartz, C.J.: The influence of nanoparticle fillers in polymer matrices on the formation and stability of transfer film during wear. In: Friedrich, K., Schlarb, A.K. (eds.) Tribology and Interface Engineering Series, vol. 55, pp. 17–34. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Windarta, M., Sudin, M.B., Baharom, M.B.: Prediction of contact temperature on interaction between rail and wheel materials using Pin-on-Disc method. J. Appl. Sci. 12, 2424–2429 (2012)

    Article  Google Scholar 

  11. Pei, X., Friedrich, K.: Sliding wear properties of PEEK, PBI and PPP. Wear 274, 452–455 (2012). doi:10.1016/j.wear.2011.09.009

    Article  Google Scholar 

  12. Kónya, L., Váradi, K., Friedrich, K.: Finite element modelling of wear process of a PEEK-steel sliding pair at elevated temperature. Period. Polytech. Mech. Eng. 49(1), 25–38 (2005)

    Google Scholar 

  13. Rodriguez, V., Sukumaran, J., Perez, Y., De Baets, P., Ando, M.: Tribological behaviour of the low and high viscosity PEEK against steel using different contact pressures. Int. J. Sustain. Constr. Des. 4(2), 1–10 (2013)

    Google Scholar 

  14. Rodriguez Fereira, V., Sukumaran, J., Perez Delgado, Y., De Baets, P., Igartua, A., Fernandez, B., Schlarb, A.K.: Proceedings of LUBMAT 2012-Lubrication, Maintenance and Tribotechnology. pp. 145–149 (2012)

  15. Chang, L., Friedrich, K., Zhang, G.: New insights into wear behavior of high performance polymers. In: Proceedings of the 14th IFToMM World Congress (14th-3), 688–694 (2015). doi:10.6567/IFToMM.14TH.WC.OS18.025

  16. Zhang, G., Liao, H., Li, H., Mateus, C., Bordes, J.M., Coddet, C.: On dry sliding friction and wear behaviour of PEEK and PEEK/SiC-composite coatings. Wear 260(6), 594–600 (2006). doi:10.1016/j.wear.2005.03.017

    Article  Google Scholar 

  17. Blau, P.J., Devore, C.E.: Interpretations of the sliding friction break-in curves of alumina-aluminum couples. Wear 129(1), 81–92 (1989). doi:10.1016/0043-1648(89)90281-0

    Article  Google Scholar 

  18. Zalisz, Z., Vroegop, P.H., Bosma, R.: A running-in model for the reciprocating sliding of Nylon 6.6 against stainless steel. Wear 121(1), 71–93 (1988). doi:10.1016/0043-1648(88)90032-4

    Article  Google Scholar 

  19. Blau, P.J.: Friction Science and Technology: From Concepts to Applications. CRC Press, Taylor & Francis Group, Boca Raton (2009)

    Google Scholar 

  20. Kato, K.: Wear in relation to friction—a review. Wear 241(2), 151–157 (2000). doi:10.1016/S0043-1648(00)00382-3

    Article  Google Scholar 

  21. Adachi, K., Kato, K., Takizawa, R.: Smoothing effect of the third body compaction on alumina surface in sliding contact. In: Dowson, D., Taylor, C.M., Childs, T.H.C., Dalmaz, G., Berthier, Y., Flamand, L., Georges, J.-M., Lubrecht, A.A. (eds.) Tribology Series, vol. 31, pp. 585–596. Elsevier, Amsterdam (1996)

    Google Scholar 

  22. Jeng, Y.-R., Lin, Z.-W., Shyu, S.-H.: Changes of surface topography during running-in process. J. Tribol. 126(3), 620–625 (2004). doi:10.1115/1.1759344

    Article  Google Scholar 

  23. Pei, X.-Q., Bennewitz, R., Busse, M., Schlarb, A.K.: Effects of single asperity geometry on friction and wear of PEEK. Wear 304(1–2), 109–117 (2013). doi:10.1016/j.wear.2013.04.032

    Article  Google Scholar 

  24. Briscoe, B.J., Sinha, S.K.: Wear of polymers. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 216(6), 401–413 (2002). doi:10.1243/135065002762355325

    Article  Google Scholar 

  25. Biswas, S.K., Vijayan, K.: Friction and wear of PTFE—a review. Wear 158(1–2), 193–211 (1992). doi:10.1016/0043-1648(92)90039-b

    Article  Google Scholar 

  26. Samyn, P., De Baets, P., Van Craenenbroeck, J., Verpoort, F., Schoukens, G.: Thermal transitions in polyimide transfer under sliding against steel, investigated by Raman spectroscopy and thermal analysis. J. Appl. Polym. Sci. 101(3), 1407–1425 (2006). doi:10.1002/app.22395

    Article  Google Scholar 

  27. Zmitrowicz, A.: Wear debris: a review of properties and constitutive models. J. Theor. Appl. Mech. 43(1), 3–35 (2005)

    Google Scholar 

  28. Tzanakis, I., Conte, M., Hadfield, M., Stolarski, T.A.: Experimental and analytical thermal study of PTFE composite sliding against high carbon steel as a function of the surface roughness, sliding velocity and applied load. Wear 303(1–2), 154–168 (2013). doi:10.1016/j.wear.2013.02.011

    Article  Google Scholar 

  29. El-Tayeb, N.S.M., Yousif, B.F.: Evaluation of glass fiber reinforced polyester composite for multi-pass abrasive wear applications. Wear 262(9–10), 1140–1151 (2007). doi:10.1016/j.wear.2006.11.015

    Article  Google Scholar 

  30. Friedrich, K., Sue, H.J., Liu, P., Almajid, A.A.: Scratch resistance of high performance polymers. Tribol. Int. 44(9), 1032–1046 (2011). doi:10.1016/j.triboint.2011.04.008

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of the German Research Foundation (Deutsche Forschungsgemeinschaft) and thank Eduard Arzt for the continuous support of this project. The authors are also grateful to Karl-Peter Schmitt and Birgit Heiland for their help in tribological tests and SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Qiang Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, XQ., Lin, LY., Schlarb, A.K. et al. Novel Experiments Reveal Scratching and Transfer Film Mechanisms in the Sliding of the PEEK/Steel Tribosystem. Tribol Lett 63, 40 (2016). https://doi.org/10.1007/s11249-016-0732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0732-5

Keywords

Navigation