Skip to main content
Log in

Effect of Crosslinking on the Microtribological Behavior of Model Polymer Brushes

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Polymer brushes in good solvents are known to exhibit excellent tribological properties. We have modeled polymer brushes and gels using a multibead-spring model and studied their tribological behavior via nonequilibrium molecular dynamics. Simulations of brush-against-wall systems were performed using an implicit solvent-based approach. Polymer chains were modeled as linear chains, randomly grafted on a planar surface. Quantities extracted from the simulations are the normal stress, shear stress and concentration profiles. We find that while an increase in the degree of crosslinking leads to an increase in the coefficient of friction, an increase in the length of crosslinker chains does the opposite. The effect of crosslinking can be understood in two ways: (1) There is a lower polymer concentration in the outer layer to take part in brush-assisted lubrication as the degree of crosslinking increases and (2) crosslinked polymer chains are more resistant to shear than noncrosslinked ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Napper, D.H.: Polymeric Stabilization of Colloidal Dispersions. Academic Press, London, New York (1983)

    Google Scholar 

  2. Hucknall, A., Simnick, A.J., Hill, R.T., Chilkoti, A., Garcia, A., Johannes, M.S., Clark, R.L., Zauscher, S., Ratner, B.D.: Versatile synthesis and micropatterning of nonfouling polymer brushes on the wafer scale. Biointerphases 4, FA50–FA57 (2009)

    Article  Google Scholar 

  3. Auroy, P., Auvray, L., Leger, L.: Characterization of the brush regime for grafted polymer layers at the solid–liquid interface. Phys. Rev. Lett. 66, 719–722 (1991)

    Article  Google Scholar 

  4. Lee, S., Spencer, N.D.: Achieving ultralow friction by aqueous, brush-assisted lubrication. In: Erdemir, A., Martin, J.M. (eds.) Superlubricity, pp. 365-396. Elsevier, Amsterdam (2007)

  5. Li, A.: Structure-Property Relationships of Surface-Grafted Polymeric Architectures: From Ultra-Thin Films To Quasi-3D Polymer Assemblies. PhD Thesis. ETH Zurich (2013)

  6. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014)

    Article  Google Scholar 

  7. Freeman, M.E., Furey, M.J., Love, B.J., Hampton, J.M.: Friction, wear, and lubrication of hydrogels as synthetic articular cartilage. Wear 241, 129–135 (2000)

    Article  Google Scholar 

  8. Irfachsyad, D., Tildesley, D., Malfreyt, P.: Dissipative particle dynamics simulation of grafted polymer brushes under shear. Phys. Chem. Chem. Phys. 4, 3008–3015 (2002)

    Article  Google Scholar 

  9. Chen, M., Briscoe, W.H., Armes, S.P., Klein, J.: Lubrication at physiological pressures by polyzwitterionic brushes. Science 323, 1698–1701 (2009)

    Article  Google Scholar 

  10. Klein, J., Perahia, D., Warburg, S.: Forces between polymer-bearing surfaces undergoing shear. Nature 352, 143–145 (1991)

  11. Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: Surface-grafted, covalently cross-linked hydrogel brushes with tunable interfacial and bulk properties. Macromolecules 44, 5344–5351 (2011)

    Article  Google Scholar 

  12. Gong, J.P.: Friction and lubrication of hydrogels? Its richness and complexity. Soft Matter 2, 544 (2006)

    Article  Google Scholar 

  13. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Elsevier, Amsterdam, London, New York, Tokyo (1993)

    Google Scholar 

  14. Raviv, U., Klein, J.: Adhesion, Friction, and Lubrication between Polymer-Bearing Surfaces. In: Matyjaszewski, K., Moeller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 607–628. Elsevier, Amsterdam (2012)

  15. Klein, J., Kumacheva, E., Perahia, D., Mahalu, D., Warburg, S.: Interfacial sliding of polymer-bearing surfaces. Faraday Discuss. 98, 173 (1994)

    Article  Google Scholar 

  16. Klein, J., Kumacheva, E., Mahaiu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370, 634–636 (1994)

    Article  Google Scholar 

  17. Nalam, P.C., Ramakrishna, S.N., Espinosa-Marzal, R.M., Spencer, N.D.: Exploring lubrication regimes at the nanoscale: nanotribological characterization of silica and polymer brushes in viscous solvents. Langmuir 29, 10149–10158 (2013)

    Article  Google Scholar 

  18. Lee, S., Spencer, N.D.: Sweet, hairy, soft, and slippery. Science 319, 575–576 (2008)

    Article  Google Scholar 

  19. Kreer, T.: Polymer-brush lubrication: a review of recent theoretical advances. Soft Matter 12(15), 3479–3501 (2016)

    Article  Google Scholar 

  20. Grest, G.S.: Computer simulations of shear and friction between polymer brushes. Curr. Opin. Colloid Interface Sci. 2, 271–277 (1997)

    Article  Google Scholar 

  21. Hoy, R.S., Grest, G.S.: Entanglements of an end-grafted polymer brush in a polymeric matrix. Macromolecules 40, 8389–8395 (2007)

    Article  Google Scholar 

  22. Grest, G.S.: Grafted polymer brushes: a constant surface pressure molecular dynamics simulation. Macromolecules 27, 418–426 (1994)

    Article  Google Scholar 

  23. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990)

    Article  Google Scholar 

  24. Grest, G.: Interfacial sliding of polymer brushes: a molecular dynamics simulation. Phys. Rev. Lett. 76, 4979–4982 (1996)

    Article  Google Scholar 

  25. Murat, M., Grest, G.S.: Molecular dynamics simulations of the force between a polymer brush and an AFM tip. Macromolecules 29, 8282–8284 (1996)

    Article  Google Scholar 

  26. Grest, G.S.: Normal and shear forces between polymer brushes. Adv. Polym. Sci. 138, 149–183 (1999)

    Article  Google Scholar 

  27. Singh, M.K., Ilg, P., Espinosa-Marzal, R.M., Kröger, M., Spencer, N.D.: Polymer brushes under shear: molecular dynamics simulations compared to experiments. Langmuir 31, 4798–4805 (2015)

    Article  Google Scholar 

  28. Galuschko, A., Spirin, L., Kreer, T., Johner, A., Pastorino, C., Wittmer, J., Baschnagel, J.: Frictional forces between strongly compressed, nonentangled polymer brushes: molecular dynamics simulations and scaling theory. Langmuir 26, 6418–6429 (2010)

    Article  Google Scholar 

  29. Nalam, P.C.: Polymer Brushes in Aqueous Solvent Mixtures: Impact of Polymer Conformation on Tribological Properties. PhD Thesis. ETH Zurich (2012)

  30. Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 23, 1657–1666 (2002)

    Article  Google Scholar 

  31. Pan, Y.-S., Xiong, D.-S., Ma, R.-Y.: A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear 262, 1021–1025 (2006)

    Article  Google Scholar 

  32. Gong, J.P., Higa, M., Iwasaki, Y., Katsuyama, Y., Osada, Y.: Friction of gels. J. Phys. Chem. B 101, 5487–5489 (1997)

    Article  Google Scholar 

  33. Caravia, L., Dowson, D., Fisher, J., Corkhill, P.H., Tighe, B.J.: Friction of hydrogel and polyurethane elastic layers when sliding against each other under a mixed lubrication regime. Wear 181, 236–240 (1995)

    Article  Google Scholar 

  34. Gong, J.P., Kurokawa, T., Narita, T., Kagata, G., Osada, Y., Nishimura, G., Kinjo, M.: Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 123, 5582–5583 (2001)

    Article  Google Scholar 

  35. Mamada, K., Fridrici, V., Kosukegawa, H., Kapsa, P., Ohta, M.: Friction properties of poly(vinyl alcohol) hydrogel: effects of degree of polymerization and saponification value. Tribol. Lett. 42, 241–251 (2011)

    Article  Google Scholar 

  36. Bavaresco, V.P., Zavaglia, C.A.C., Reis, M.C., Gomes, J.R.: Study on the tribological properties of pHEMA hydrogels for use in artificial articular cartilage. Wear 265, 269–277 (2008)

    Article  Google Scholar 

  37. Ohsedo, Y., Takashina, R., Gong, J.P., Osada, Y.: Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir 20, 6549–6555 (2004)

    Article  Google Scholar 

  38. Ishikawa, Y., Hiratsuka, K.-I., Sasada, T.: Role of water in the lubrication of hydrogel. Wear 261, 500–504 (2005)

    Article  Google Scholar 

  39. Alexander, S.: Adsorption of chain molecules with a polar head a scaling description. J. Phys.-Paris 38, 983–987 (1977)

    Article  Google Scholar 

  40. De Gennes, P.G.: Conformations of polymers attached to an interface. Macromolecules 13, 1069–1075 (1980)

    Article  Google Scholar 

  41. Semenov, A.N.: Contribution to the theory of microphase layering in block-copolymer melts. Zh. Eksp. Teor. Fiz. 88, 1242–1256 (1985)

  42. Milner, S.T., Witten, T.A., Cates, M.E.: Theory of the grafted polymer brush. Macromolecules 21, 2610–2619 (1988)

    Article  Google Scholar 

  43. Zhulina, Y.B., Pryamitsyn, V.A., Borisov, O.V.: Structure and conformational transitions in grafted polymer chain layers. A new theory. Polym. Sci. U.S.S.R. 31, 205–216 (1989)

    Article  Google Scholar 

  44. Binder, K., Müller, M.: Monte Carlo simulation of block copolymers. Curr. Opin. Colloid Interface Sci. 5, 315–323 (2000)

    Article  Google Scholar 

  45. Hsu, H.-P., Paul, W.: A fast Monte Carlo algorithm for studying bottle-brush polymers. Comput. Phys. Commun. 182, 2115–2121 (2011)

    Article  Google Scholar 

  46. Binder, K., Müller, M., Schmid, F., Werner, A.: Interfaces in partly compatible polymer mixtures: a Monte-Carlo simulation approach. Phys. A 249, 293–300 (1998)

    Article  Google Scholar 

  47. Doyle, P.S., Shaqfeh, E., Gast, A.P.: Rheology of polymer brushes: a Brownian dynamics study. Macromolecules 31, 5474–5486 (1998)

    Article  Google Scholar 

  48. Goujon, F., Ghoufi, A., Malfreyt, P., Tildesley, D.J.: The kinetic friction coefficient of neutral and charged polymer brushes. Soft Matter 9, 2966 (2013)

    Article  Google Scholar 

  49. Carrillo, J.-M.Y., Brown, W.M., Dobrynin, A.V.: Explicit solvent simulations of friction between brush layers of charged and neutral bottle-brush macromolecules. Macromolecules 45, 8880–8891 (2012)

    Article  Google Scholar 

  50. Elliott, I.G., Kuhl, T.L., Faller, R.: Compression of high grafting density opposing polymer brushes using molecular dynamics simulations in explicit solvent. J. Phys. Chem. B 117, 4134–4141 (2013)

    Article  Google Scholar 

  51. Jentzsch, C., Sommer, J.-U.: Polymer brushes in explicit poor solvents studied using a new variant of the bond fluctuation model. J. Chem. Phys. 141, 104908 (2014)

    Article  Google Scholar 

  52. Kreer, T., Binder, K., Müser, M.H.: Friction between polymer brushes in good solvent conditions: steady-state sliding versus transient behavior. Langmuir 19, 7551–7559 (2003)

    Article  Google Scholar 

  53. Kreer, T., Müser, M.H., Binder, K., Klein, J.: Frictional drag mechanisms between polymer-bearing surfaces. Langmuir 17, 7804–7813 (2001)

    Article  Google Scholar 

  54. Kreer, T., Müser, M.H.: On the tribology and rheology of polymer brushes in good solvent conditions: a molecular dynamics study. Wear 254, 827–831 (2003)

    Article  Google Scholar 

  55. de Beer, S., Müser, M.H.: Alternative dissipation mechanisms and the effect of the solvent in friction between polymer brushes on rough surfaces. Soft Matter 9, 7234 (2013)

    Article  Google Scholar 

  56. Dimitrov, D.I., Milchev, A., Binder, K.: Polymer brushes in solvents of variable quality: molecular dynamics simulations using explicit solvent. J. Chem. Phys. 127, 084905 (2007)

    Article  Google Scholar 

  57. Galuschko, A.: Molecular Dynamics Simulations of Sheared Polymer Brushes. PhD Thesis. Strasbourg University. (2010)

  58. Pastorino, C., Kreer, T., Müller, M., Binder, K.: Comparison of dissipative particle dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems. Phys. Rev. E 76, 026706 (2007)

    Article  Google Scholar 

  59. Chen, J., Zhou, S.-M., Ma, B.-G., Zhang, L.-M., Yi, J.-Z.: Molecular dynamics simulations on dextran hydrogels. e-Polymers 13, 1–8 (2013)

    Article  Google Scholar 

  60. Walter, J., Sehrt, J., Vrabec, J., Hasse, H.: Molecular dynamics and experimental study of conformation change of poly(N-isopropylacrylamide) hydrogels in mixtures of water and methanol. J. Phys. Chem. B 116, 5251–5259 (2012)

    Article  Google Scholar 

  61. Tönsing, T., Oldiges, C.: Molecular dynamic simulation study on structure of water in crosslinked poly(N-isopropylacrylamide) hydrogels. Phys. Chem. Chem. Phys. 3, 5542–5549 (2001)

    Article  Google Scholar 

  62. Hoffmann, M., Lang, M., Sommer, J.-U.: Gelation threshold of cross-linked polymer brushes. Phys. Rev. E 83, 021803 (2011)

    Article  Google Scholar 

  63. Ou, X., Han, Q., Dai, H.-H., Wang, J.: Molecular dynamic simulations of the water absorbency of hydrogels. J. Molec. Model. 21, 231 (2015)

    Article  Google Scholar 

  64. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  65. Kröger, M.: Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses. Comput. Phys. Commun. 118, 278–298 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the ETH Research Commission for financial support to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Ilg, P., Espinosa-Marzal, R.M. et al. Effect of Crosslinking on the Microtribological Behavior of Model Polymer Brushes. Tribol Lett 63, 17 (2016). https://doi.org/10.1007/s11249-016-0705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0705-8

Keywords

Navigation