Tribology Letters

, 62:34 | Cite as

Silicone Rubber Adhesion and Sliding Friction

  • B. N. J. PerssonEmail author
Original Paper


Using a Leonardo da Vinci experimental setup (constant driving force), I have studied the low-speed sliding friction for silicone rubber on a smooth polymer substrate. The friction force depends nonlinearly on the load, which I attribute to the influence of adhesion on the area of real contact. The experimental results are analyzed using the Persson’s contact mechanics theory, and the calculated dependency of the area of real contact on the load agrees very well with the experimental results.


Adhesion Contact mechanics Rubber friction 



I thank Boris Lorenz for the surface topography and viscoelastic modulus measurements. I thank Pfisterer Kontaktsysteme GmbH for supplying the materials used in this study and for support. This work was performed within a Reinhart-Koselleck project funded by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank DFG for the project support under the reference German Research Foundation DFG-Grant: MU 1225/36-1. The research work was also supported by the DFG-Grant: PE 807/10-1. This work was supported in part by COST Action MP1303.


  1. 1.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic, London (2011)Google Scholar
  2. 2.
    Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Gnecco, E., Meyer, E.: Elements of Friction Theory and Nanotribology. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  4. 4.
    Dunn, A.C., Tichy, J.A., Uruena, J.M., Sawyer, W.G.: Lubrication regimes in contact lens wear during a blink. Tribol. Int. 63, 45 (2013)CrossRefGoogle Scholar
  5. 5.
    Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185 (2012)CrossRefGoogle Scholar
  6. 6.
    Lorenz, B., Oh, Y.R., Nam, S.K., Jeon, S.H., Persson, B.N.J.: Rubber friction on road surfaces: experiment and theory for low sliding speeds. J. Chem. Phys. 142, 194701 (2015)CrossRefGoogle Scholar
  7. 7.
    Hutt, W., Persson, B.N.J.: Soft matter dynamics: accelerated fluid squeeze-out during slip. J. Chem. Phys. 144, 124903 (2016)CrossRefGoogle Scholar
  8. 8.
    Persson, B.N.J.: Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8, 385 (2002)CrossRefGoogle Scholar
  9. 9.
    Persson, B.N.J., Sivebk, I.M., Samoilov, V.N., Zhao, K., Volokitin, A.I., Zhang, Z.: On the origin of Amonton’s friction law. J. Phys. Condens. Matter 20, 395006 (2008)CrossRefGoogle Scholar
  10. 10.
    Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. 111, 3298 (2014)CrossRefGoogle Scholar
  11. 11.
    Persson, B.N.J., Scaraggi, M.: Theory of adhesion: role of surface roughness. J. Chem. Phys. 141, 124701 (2014)CrossRefGoogle Scholar
  12. 12.
    Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E 30, 65 (2009)CrossRefGoogle Scholar
  13. 13.
    Müser, M.H.: Single-asperity contact mechanics with positive and negative work of adhesion: influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids. Beilstein J. Nanotechnol. 5, 419 (2014)CrossRefGoogle Scholar
  14. 14.
    Chateauminois, A., Fretigny, C.: Local friction at a sliding interface between an elastomer and a rigid spherical probe. Eur. Phys. J. E 27, 221 (2008)CrossRefGoogle Scholar
  15. 15.
    Lorenz, B., Krick, B.A., Rodriguez, N., Sawyer, W.G., Mangiagalli, P., Persson, B.N.J.: Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting. J. Phys. Condens. Matter 25, 445013 (2013)CrossRefGoogle Scholar
  16. 16.
    Nguyen, D.T., Wanderman, E., Prevost, A., Chenadec, Y.L., Fretigny, C., Chateauminois, A.: NonAmontons-Coulomb local friction law of randomly rough contact interfaces with rubber. EPL 104, 64001 (2013)CrossRefGoogle Scholar
  17. 17.
    Chaudhury, M.K., Whitesides, G.M.: Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013 (1991)CrossRefGoogle Scholar
  18. 18.
    Trejo, M., Fretigny, C., Chateauminois, A.: Friction of viscoelastic elastomers with rough surfaces under torsional contact conditions. Phys. Rev. E 88, 052401 (2013)CrossRefGoogle Scholar
  19. 19.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840 (2001)CrossRefGoogle Scholar
  20. 20.
    Campana, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. 77, 38005 (2007)CrossRefGoogle Scholar
  21. 21.
    Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)CrossRefGoogle Scholar
  22. 22.
    Persson, B.N.J., Yang, C.: Theory of the leak-rate of seals. J. Phys. Condens. Matter 20, 315011 (2008)CrossRefGoogle Scholar
  23. 23.
    Lorenz, B., Persson, B.N.J.: Leak rate of seals: effective-medium theory and comparison with experiment. Eur. Phys. J. E 31, 159 (2010)CrossRefGoogle Scholar
  24. 24.
    Campana, C., Persson, B.N.J., Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J. Phys. Condens. Matter 23, 085001 (2011)CrossRefGoogle Scholar
  25. 25.
    Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts between rough surfaces. Phys. Rev. Lett. 106, 204301 (2012)CrossRefGoogle Scholar
  26. 26.
    Barber, J.A.: Bounds on the electrical resistance between contacting elastic rough bodies. Proc. R. Soc. Lond. A 495, 53 (2003)CrossRefGoogle Scholar
  27. 27.
    Persson, B.N.J., Lorenz, B., Volokitin, A.I.: Heat transfer between elastic solids with randomly rough surfaces. Eur. Phys. J. E 31, 3 (2010)CrossRefGoogle Scholar
  28. 28.
    Dapp, W.B., Lucke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244301 (2012)CrossRefGoogle Scholar
  29. 29.
    Martin, H.M.: A dimensionless measure for adhesion and effects of the range of adhesion in contacts of nominally flat surfaces. Tribo. Int. doi: 10.1016/j.triboint.2015.11.010

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.PGI-1, FZ JülichJülichGermany

Personalised recommendations