Tribology Letters

, 62:25 | Cite as

Effect of In-situ Processing Parameters on the Mechanical and Tribological Properties of Self-Lubricating Hybrid Aluminum Nanocomposites

  • Afsaneh Dorri Moghadam
  • Emad OmraniEmail author
  • Pradeep L. Menezes
  • Pradeep K. Rohatgi
Original Paper
Part of the following topical collections:
  1. STLE Tribology Frontiers Conference 2015


In the present investigation, aluminum/TiB2/Al2O3 metal matrix composite was fabricated using the liquid metallurgy route. The transmission electron microscopy study was conducted in order to investigate the microstructure of the in-situ processed composites. X-ray diffraction analysis of the composite was performed to investigate the various phases present in the composite. Dry sliding tests were conducted using pin-on-disk tribometer in order to understand the self-lubricating behavior of developed composite. The microstructural characteristics revealed formation of in-situ phases and uniform dispersion of the reinforcement phases throughout the composite. The developed hybrid self-lubricating nanocomposites showed superior mechanical and tribological properties. The superior tribological properties of hybrid composite are attributed to the formation and synergetic effect of TiB2 and Al2O3 particles in the composites. The Al2O3 hard ceramic particles act as the obstacles to the movement of dislocation and thus enhance the mechanical properties. The oxidation of TiB2 on the surface forms H3BO3 and TiO2 tribolayer resulting in superior tribological properties.


Tribology Friction Wear Nanocomposite Self-lubricating H3BO3 TiB2 


  1. 1.
    Omrani, E., Moghadam, A.D., Menezes, P.L., Rohatgi, P.K.: Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—a review. Int. J. Adv. Manuf. Technol. 83, 325–346 (2016)Google Scholar
  2. 2.
    Moghadam, A.D., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos. B Eng. 77, 402–420 (2015)CrossRefGoogle Scholar
  3. 3.
    Prasad, S., Asthana, R.: Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17, 445–453 (2004)CrossRefGoogle Scholar
  4. 4.
    Cole, G., Sherman, A.: Light weight materials for automotive applications. Mater. Charact. 35, 3–9 (1995)CrossRefGoogle Scholar
  5. 5.
    Azimi, A., Shokuhfar, A., Nejadseyfi, O., Fallahdoost, H., Salehi, S.: Optimizing consolidation behavior of Al 7068–TiC nanocomposites using Taguchi statistical analysis. Trans. Nonferrous Met. Soc. China 25, 2499–2508 (2015)CrossRefGoogle Scholar
  6. 6.
    Deaquino-Lara, R., Soltani, N., Bahrami, A., Gutiérrez-Castañeda, E., García-Sánchez, E., Hernandez-Rodríguez, M.: Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Des. 67, 224–231 (2015)CrossRefGoogle Scholar
  7. 7.
    Omrani, E., Moghadam, A.D., Menezes, P.L., Rohatgi, P.K.: New Emerging Self-Lubricating Metal Matrix Composites for Tribological Applications, Ecotribology, pp. 63–103. Springer International Publishing, Berlin (2016)Google Scholar
  8. 8.
    Bajwa, R.S., Khan, Z., Bakolas, V., Braun, W.: Effect of bath ionic strength on adhesion and tribological properties of pure nickel and Ni-based nanocomposite coatings. J. Adhes. Sci. Technol. 30, 653–665 (2016)CrossRefGoogle Scholar
  9. 9.
    Lasa, L., Rodriguez-Ibabe, J.: Effect of composition and processing route on the wear behaviour of Al–Si alloys. Scr. Mater. 46, 477–481 (2002)CrossRefGoogle Scholar
  10. 10.
    Barmouz, M., Givi, M.K.B., Seyfi, J.: On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater. Charact. 62, 108–117 (2011)CrossRefGoogle Scholar
  11. 11.
    Rahimian, M., Parvin, N., Ehsani, N.: The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite. Mater. Des. 32, 1031–1038 (2011)CrossRefGoogle Scholar
  12. 12.
    Rajabi, A., Ghazali, M., Daud, A.: Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet—a review. Mater. Des. 67, 95–106 (2015)CrossRefGoogle Scholar
  13. 13.
    Amirkhanlou, S., Ketabchi, M., Parvin, N., Drummen, G.: Structural evaluation and mechanical properties of aluminum/tungsten carbide composites fabricated by continual annealing and press bonding (CAPB) process. Metall. Mater. Trans. B 45, 1992–1999 (2014)CrossRefGoogle Scholar
  14. 14.
    Bajwa, R.S., Khan, Z., Bakolas, V., Braun, W.: Water-lubricated Ni-based composite (Ni–Al2O3, Ni–SiC and Ni–ZrO2) thin film coatings for industrial applications. Acta Metall. Sin. (Engl. Lett.) 29, 8–16 (2016)Google Scholar
  15. 15.
    He, F., Han, Q., Jackson, M.J.: Nanoparticulate reinforced metal matrix nanocomposites—a review. Int. J. Nanopart. 1, 301–309 (2008)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Chen, D.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. Mater. 54, 1321–1326 (2006)CrossRefGoogle Scholar
  17. 17.
    Ma, Z., Li, J., Li, S., Ning, X., Lu, Y., Bi, J.: Property-microstructure correlation in in situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminium composites. J. Mater. Sci. 31, 741–747 (1996)CrossRefGoogle Scholar
  18. 18.
    Tee, K., Lu, L., Lai, M.: In situ stir cast Al–TiB2 composite: processing and mechanical properties. Mater. Sci. Technol. 17, 201–206 (2001)CrossRefGoogle Scholar
  19. 19.
    Fjellstedt, J., Jarfors, A.E.: On the precipitation of TiB2 in aluminum melts from the reaction with KBF4 and K2TiF6. Mater. Sci. Eng. A 413, 527–532 (2005)CrossRefGoogle Scholar
  20. 20.
    Zhu, H.-G., Wang, H.-Z., Ge, L.-Q., Shi, C., Wu, S.-Q.: Formation of composites fabricated by exothermic dispersion reaction in Al–TiO2–B2O3 system. Trans. Nonferrous Met. Soc. China 17, 590–594 (2007)CrossRefGoogle Scholar
  21. 21.
    Emamy, M., Mahta, M., Rasizadeh, J.: Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. 66, 1063–1066 (2006)CrossRefGoogle Scholar
  22. 22.
    Tjong, S., Tam, K.: Mechanical and thermal expansion behavior of hipped aluminum–TiB2 composites. Mater. Chem. Phys. 97, 91–97 (2006)CrossRefGoogle Scholar
  23. 23.
    Sulima, I., Jaworska, L., Wyżga, P., Perek-Nowak, M.: The influence of reinforcing particles on mechanical and tribological properties and microstructure of the steel-TiB2 composites. J. Achiev. Mater. Manuf. Eng. 48, 52–57 (2011)Google Scholar
  24. 24.
    Tu, J., Wang, N., Yang, Y., Qi, W., Liu, F., Zhang, X., Lu, H., Liu, M.: Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Mater. Lett. 52, 448–452 (2002)CrossRefGoogle Scholar
  25. 25.
    Estruga, M., Chen, L., Choi, H., Li, X., Jin, S.: Ultrasonic-assisted synthesis of surface-clean TiB2 nanoparticles and their improved dispersion and capture in Al-matrix nanocomposites. ACS Appl. Mater. Interfaces 5, 8813–8819 (2013)CrossRefGoogle Scholar
  26. 26.
    Schultz, B., Ferguson, J., Rohatgi, P.: Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng. A 530, 87–97 (2011)CrossRefGoogle Scholar
  27. 27.
    Pai, B., Ramani, G., Pillai, R., Satyanarayana, K.: Role of magnesium in cast aluminium alloy matrix composites. J. Mater. Sci. 30, 1903–1911 (1995)CrossRefGoogle Scholar
  28. 28.
    Padhi, P., Kumar, K.N., Ghosh, S., Vishwanatha, H., Panigrahi, S., Ghosh, S.: Modeling and experimental validation of deagglomeration of ultrafine nanoparticles in liquid Al during noncontact ultrasonic casting of Al–Al2O3 nanocomposite. Mater. Manuf. Process. (2015). doi: 10.1080/10426914.2015.1004707
  29. 29.
    Kozulin, A.A., Vorozhtsov, S.A., Kulkov, S.S., Teipel, U., Kulkov, S.N.: Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures. In: Panin, V.E., Psakhie, S.G., Fomin, V.M. (eds.) Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures, p. 020102. AIP Publishing, Tomsk (2015)Google Scholar
  30. 30.
    Li, X., Yang, Y., Cheng, X.: Ultrasonic-assisted fabrication of metal matrix nanocomposites. J. Mater. Sci. 39, 3211–3212 (2004)CrossRefGoogle Scholar
  31. 31.
    Beltowska-Lehman, E., Indyka, P., Bigos, A., Szczerba, M., Kot, M.: Ni–W/ZrO2 nanocomposites obtained by ultrasonic DC electrodeposition. Mater. Des. 80, 1–11 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhou, X., Jiang, L., Lei, S., Tian, W.Q., Wu, G.: Micro-mechanism in self-lubrication of TiB2/Al composite. ACS Appl. Mater. Interfaces 7, 12688–12694 (2015)CrossRefGoogle Scholar
  33. 33.
    Menezes, P.L., Nosonovsky, M., Kailas, S.V., Lovell, M.R.: Friction and wear. In: Menezes, P.L., Nosonovsky, M., Ingole, S.P., Kailas, S.V., Lovell, M.R. (eds.) Tribology for Scientists and Engineers, pp. 43–91. Springer, New York (2013)CrossRefGoogle Scholar
  34. 34.
    Erdemir, A., Fenske, G., Erck, R.: A study of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings. Surf. Coat. Technol. 43, 588–596 (1990)CrossRefGoogle Scholar
  35. 35.
    Ma, X., Unertl, W., Erdemir, A.: The boron oxide-boric acid system: nanoscale mechanical and wear properties. J. Mater. Res. 14, 3455–3466 (1999)CrossRefGoogle Scholar
  36. 36.
    Lovell, M.R., Kabir, M., Menezes, P.L., Higgs, C.F.: Influence of boric acid additive size on green lubricant performance. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 368, 4851–4868 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Tribology Lab, Department of Materials Science and Engineering, College of Engineering and Applied ScienceUniversity of WisconsinMilwaukeeUSA
  2. 2.Center for Advanced Materials Manufacturing, Department of Materials Science and Engineering, College of Engineering and Applied ScienceUniversity of WisconsinMilwaukeeUSA
  3. 3.Department of Mechanical EngineeringUniversity of NevadaRenoUSA

Personalised recommendations