Tribology Letters

, 62:24 | Cite as

Effect of Alkyl Chain Length on the Orientational Behavior of Liquid Crystals Nano-Film

  • Ming Gao
  • Liran MaEmail author
  • Jianbin Luo
Original Paper


Different homologues of cyanobiphenyl liquid crystals (CB LC) (nCB with n = 5, 6, 7) present an interesting and novel material system. So far, their orientational behavior at nanoscale has not been extensively investigated yet. Here, we utilized a self-established in situ ball-on-disk testing platform equipped with polarized Raman spectroscopy, to study the ordering performance of nCB LCs confined as a nano-thin lubricating film. The results demonstrated that both external condition as shear velocity and internal molecular alkyl length dramatically affect the ordering process of nCB LC nano-lubricating film, consequently the degree of anisotropy. A simple model, along with detailed physical analysis, has been proposed to explain the observed phenomena. Our findings may provide new insights into controlling the alignment of LCs during lubricating.


Nanotribology Liquid crystal Nano-lubricating film Raman spectroscopy 



The work was financially supported by the National Natural Science Foundation of China (51305225), the National Key Basic Research Program of China (2013CB934200), Research Fund of the Tsinghua University (20131089320).

Supplementary material

11249_2016_663_MOESM1_ESM.docx (178 kb)
Supplementary material 1 (DOCX 177 kb)


  1. 1.
    Hassanzadeh, A., Lindquist, R.G.: Liquid crystal sensor microchip. IEEE Sens. J. 12(5), 1536 (2012)CrossRefGoogle Scholar
  2. 2.
    Hird, M.: Fluorinated liquid crystals–properties and applications. Chem. Soc. Rev. 36(12), 2070 (2007)CrossRefGoogle Scholar
  3. 3.
    Sengupta, A., Tkalec, U., Ravnik, M., Yeomans, J.M., Bahr, C., Herminghaus, S.: Liquid crystal microfluidics for tunable flow shaping. Phys. Rev. Lett. 110(4), 048303 (2013)CrossRefGoogle Scholar
  4. 4.
    Kim, J.H., Yoneya, M., Yokoyama, H.: Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 420(6912), 159 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Kikuchi, Y. Haseha, S. Yamamoto, T. Iwata and H. Higuchi, Sid Symposium Digest of Technical Papers 15(2), 578 (2009)Google Scholar
  6. 6.
    Luo, J.B., Shen, M.W., Wen, S.Z.: Tribological properties of nanoliquid film under an external electric field. J. Appl. Phys. 96(11), 6733 (2004)CrossRefGoogle Scholar
  7. 7.
    Mori, S., Iwata, H.: Relationship between tribological performance of liquid crystals and their molecular structure. Tribol. Int. 29(1), 35 (1986)CrossRefGoogle Scholar
  8. 8.
    Araki, T., Buscaglia, M., Bellini, T., Tanaka, H.: Memory and topological frustration in nematic liquid crystals confined in porous materials. Nat. Mater. 10(4), 303 (2011)CrossRefGoogle Scholar
  9. 9.
    Borzsonyi, T., Szabo, B., Toros, G., Wegner, S., Torok, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108(22), 228 (2012)CrossRefGoogle Scholar
  10. 10.
    Amann, T., Kailer, A.: Ultralow friction of mesogenic fluid mixtures in tribological reciprocating systems. Tribol Lett 37(2), 343 (2010)CrossRefGoogle Scholar
  11. 11.
    Nakano, K.: Scaling law on molecular orientation and effective viscosity of liquid-crystalline boundary films. Tribol Lett 14(1), 17 (2003)CrossRefGoogle Scholar
  12. 12.
    Jiménez, A.E., Bermúdez, M.D., Carrión, F.J., Martínez-Nicolás, G., Amann, T.: Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261(3–4), 347 (2006)CrossRefGoogle Scholar
  13. 13.
    De Gennes, P.G.: Interactions between solid surfaces in a presmectic fluid. Langmuir 6(9), 1448 (1990)CrossRefGoogle Scholar
  14. 14.
    Liu, X., Zhang, X., Tian, Y., Meng, Y.: Ordering of the 7CB liquid crystal induced by nanoscale confinement and boundary lubrication. Liq Cryst 39(11), 1305 (2012)CrossRefGoogle Scholar
  15. 15.
    Matsumura, Y., Shiraishi, T., Morishita, S.: Stiffness and damping of liquid crystal lubricating film under electric field. Tribol. Int. 54, 32 (2012)CrossRefGoogle Scholar
  16. 16.
    Nakano, S., Mizukami, M., Kurihara, K.: Effect of confinement on electric field induced orientation of a nematic liquid crystal. Soft Matter 10(13), 2110 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, S., Liu, Y., Luo, J.: In situ observation of the molecular ordering in the lubricating point contact area. J. Appl. Phys. 116(1), 014302 (2014)CrossRefGoogle Scholar
  18. 18.
    Holbrey, J.D., Seddon, K.R.: The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans. 13, 2133 (1999)CrossRefGoogle Scholar
  19. 19.
    Chmielewski, A.G., Lepakiewicz, E.: Rheological properties of some biphenyl liquid crystals. Rheol. Acta 23(2), 207 (1984)CrossRefGoogle Scholar
  20. 20.
    Jadżyn, J., Czechowski, G., Bauman, D.: Static and dynamic dielectric polarization and viscosity of n-hexylcyanobiphenyl in the isotropic and nematic phases. Zeitschrift für Naturforschung A 55(9–10), 810 (2000)Google Scholar
  21. 21.
    Ananthaiah, J., Sahoo, R., Rasna, M.V., Dhara, S.: Rheology of nematic liquid crystals with highly polar molecules. Phys. Rev. E 89(2), 022510 (2014)CrossRefGoogle Scholar
  22. 22.
    Oweimreen, G.A.: The effect of quasispherical solutes on the smectic-A-nematic and nematic-isotropic phase equilibria in p-n-Alkyl-p’-Cyanobiphenyl liquid crystals. J. Phys. Chem. B 105(35), 8410 (2001)CrossRefGoogle Scholar
  23. 23.
    Luo, J., Wen, S., Huang, P.: Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear 194, 107 (1996)CrossRefGoogle Scholar
  24. 24.
    Luo, J., Huang, P., Wen, S.: Characteristics of liquid lubricant films at the nano-scale. J. Tribol. 121(4), 872 (1999)CrossRefGoogle Scholar
  25. 25.
    Patricio, P., Leal, C.R., Pinto, L.F.V.: Electro-rheology study of a series of liquid crystal cyanobiphenyls: experimental and theoretical treatment. Liq. Cryst. 39(1), 25 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations