Advertisement

Tribology Letters

, 61:17 | Cite as

Insigths into the Tribochemistry of Silicon-doped Carbon-Based Films by Ab Initio Analysis of Water–Surface Interactions

  • Seiji Kajita
  • M. C. RighiEmail author
Original Paper

Abstract

Diamond and diamond-like carbon are used as coating materials for numerous applications, ranging from biomedicine to tribology. Recently, it has been shown that the hydrophilicity of the carbon films can be enhanced by silicon doping, which highly improves their biocompatibility and frictional performances. Despite the relevance of these properties for applications, a microscopic understanding on the effects of silicon is still lacking. Here, we apply ab initio calculations to study the interaction of water molecules with Si-incorporating C(001) surfaces. We find that the presence of Si dopants considerably increases the energy gain for water chemisorption and decreases the energy barrier for water dissociation by more than 50 %. We provide a physical rational for the phenomenon by analyzing the electronic charge displacements occurring upon adsorption. We also show that once hydroxylated, the surface is able to bind further water molecules much strongly than the clean surface via hydrogen bond networks. This two-step process is consistent with and can explain the enhanced hydrophilic character observed in carbon-based films doped by silicon.

Keywords

Si-doped diamond-like carbon Tribochemistry Hydrophilicity Water adsorption Ab initio calculations 

Notes

Acknowledgments

We acknowledge the CINECA consortium for the availability of high-performance computing resources and support through the ISCRA-B TRIBOGMD project.

References

  1. 1.
    Sanchez-Lopez, J.C., Fernandez, A.: Doping and alloying effects on DLC coatings. In: Donnet, C., Erdemir, A. (eds.) Tribology of diamond-like carbon films, pp. 311–338. Springer, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Bewilogua, K., Hofmann, D.: History of diamond-like carbon films—from first experiments to worldwide applications. Surf. Coat. Technol. 242, 214–225 (2014)CrossRefGoogle Scholar
  3. 3.
    Donnet, C.: Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review. Surf. Coat. Technol. 100–101, 180–186 (1998)CrossRefGoogle Scholar
  4. 4.
    Grill, A.: Diamond-like carbon: state of the art. Diam. Relat. Mater. 8, 428–434 (1999)CrossRefGoogle Scholar
  5. 5.
    Mori, H., Tachikawa, H.: Increased adhesion of diamond-like carbon–Si coatings and its tribological properties. Surf. Coat. Technol. 149, 224–229 (2002)CrossRefGoogle Scholar
  6. 6.
    Miyake, S., Kaneko, R., Kikuya, Y., Sugimoto, I.: Micro-tribological studies on fluorinated carbon films. ASME J. Tribol. Trans. 113, 384–389 (1991)CrossRefGoogle Scholar
  7. 7.
    Camargo Jr, S.S., Santos, R.A., Neto, A.L.B., Carius, R., Finger, F.: Structural modifcations and temperature stability of silicon incorporated diamond-like a-C: H films. Thin Solid Films 332, 130–135 (1998)CrossRefGoogle Scholar
  8. 8.
    Wu, W.J., Hon, M.H.: Thermal stability of diamond-like carbon films with added silicon. Surf. Coat. Technol. 111, 134–140 (1999)CrossRefGoogle Scholar
  9. 9.
    Varma, A., Palshin, V., Meletis, E.I.: Structure-property relationship of Si-DLC films. Surf. Coat. Technol. 148, 305–14 (2001)CrossRefGoogle Scholar
  10. 10.
    Hatada, R., Flege, S., Baba, K., Ensinger, W., Kleebe, H.-J., Sethmann, I., Lauterbach, S.: Temperature dependent properties of silicon containing diamondlike carbon films prepared by plasma source ion implantation. J. Appl. Phys. 107, 083307 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhao, Q., Liu, Y., Wang, C., Wang, S.: Bacterial adhesion on silicon-doped diamond-like carbon films. Diam. Relat. Mater. 16, 1682–1687 (2007)CrossRefGoogle Scholar
  12. 12.
    Bendavid, A., Martin, P.J., Comte, C., Preston, E.W., Haq, A.J., MagdonIsmail, F.S., Singh, R.K.: The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Diam. Relat. Mater. 16, 1616–1622 (2007)CrossRefGoogle Scholar
  13. 13.
    Oguri, K., Arai, T.: Friction coefficient of Si–C, Ti–C and Ge–C coatings with excess carbon formed by plasma-assisted chemical vapour deposition. Thin Solid Films 208, 158–160 (1992)CrossRefGoogle Scholar
  14. 14.
    Kim, M.G., Lee, K.R., Eun, K.Y.: Tribological behavior of silicon-incorporated diamond-like carbon films. Surf. Coat. Technol. 112, 204–209 (1999)CrossRefGoogle Scholar
  15. 15.
    Ikeyama, M., Nakao, S., Miyagawa, Y., Miyagawa, S.: Effects of Si content in DLC films on their friction and wear properties. Surf. Coat. Technol. 191, 38–42 (2005)CrossRefGoogle Scholar
  16. 16.
    Lanigan, J., Zhao, H., Morina, A., Neville, A.: Tribochemistry of silicon and oxygen doped, hydrogenated Diamond-like Carbon in fully-formulated oil against low additive oil. Tribol. Int. 82, 431–442 (2015)CrossRefGoogle Scholar
  17. 17.
    Wu, X., Ohana, T., Tanaka, A., Kubo, T., Nanao, H., Minami, I., Mori, S.: Tribochemical reaction of Si-DLC coating in water studied by stable isotopic tracer. Diam. Relat. Mater. 17, 147–153 (2008)CrossRefGoogle Scholar
  18. 18.
    Takahashi, N.: Analysis of silanol by derivatization XPS. R&D Rev. Toyota CRDL 41, 52 (2006)Google Scholar
  19. 19.
    Mori, H., Takahashi, N., Kazuyuki, N., Tachikawa, H., Ohmori, T.: Low friction property and its mechanism of DLC-Si films under dry sliding conditions. SAE Int. 07M–426, 16 (2007)Google Scholar
  20. 20.
    Kato, N., Mori, H., Takahashi, N.: Spectroscopic ellipsometry of silicon-containing diamond-like carbon (DLC-Si) films. Phys. Stat. sol. 5, 1117–1120 (2008)CrossRefGoogle Scholar
  21. 21.
    Washizu, H., Sand, S., Hyodo, S., Ohmori, T., Nishino, N., Suzuki, A.: Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology. J. Phys.: Conf. Ser. 89, 012009 (2007)Google Scholar
  22. 22.
    Dearnaley, G., Arps, J.H.: Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surf. Coat. Technol. 200, 2518–2524 (2005)CrossRefGoogle Scholar
  23. 23.
    Saitoa, T., Hasebea, T., Yohenaa, S., Matsuokaa, Y., Kamijoc, A., Takahashic, K., Suzukia, T.: Antithrombogenicity of fluorinated diamond-like carbon films. Diam. Relat. Mater. 14, 1116–1119 (2005)CrossRefGoogle Scholar
  24. 24.
    Borisenko, K.B., Reavy, H.J., Zhao, Q., Abel, E.W., Biomed, J.: Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations. Mater. Res. A 86, 1113–1121 (2008)CrossRefGoogle Scholar
  25. 25.
    Yi, J.W., Moon, M.W., Ahmed, S.F., et al.: Long-lasting hydrophilicity on nanostructured Si-incorporated diamond-like carbon films. Langmuir 26, 17203–17209 (2010)CrossRefGoogle Scholar
  26. 26.
    Okamoto, Y.: Initial H2O-induced oxidation of C(001)-(21): a study with hybrid density-functional theory. Phys. Rev. B 58, 6760 (1998)CrossRefGoogle Scholar
  27. 27.
    Manelli, O., Corni, S., Righi, M.C.: Water adsorption on native and hydrogenated diamond (001) surfaces. J. Phys. Chem. C 114, 7045–7053 (2010)CrossRefGoogle Scholar
  28. 28.
    Bouchet, M.-I.B., Zilibotti, G., Matta, C., Righi, M.C., Vandenbulcke, L., Vacher, B., Martin, J.-M.: Friction of diamond in the presence of water vapor and hydrogen gas. coupling gas-phase lubrication and first-principles studies. J. Phys. Chem. C 116, 69666972 (2012)CrossRefGoogle Scholar
  29. 29.
    Zilibotti, G., Corni, S., Righi, M.C.: Load-induced confinement activates diamond lubrication by water. Phys. Rev. Lett. 111, 146101 (2013)CrossRefGoogle Scholar
  30. 30.
    Grossman, J.C., Schwegler, E., Galli, G.: Quantum and classical molecular dynamics simulations of hydrophobic hydration structure around small solutes. J. Phys. Chem. B 108, 15865–15872 (2004)CrossRefGoogle Scholar
  31. 31.
    Iseki, T., Mori, H., Hasegawa, H., Tachikawa, H., Nakanishi, K.: Structural analysis of Si-containing diamond-like carbon. Diam. Relat. Mater. 15, 1004–1010 (2006)CrossRefGoogle Scholar
  32. 32.
    Palshin, V., Tittsworth, R.C., Fountzoulas, C.G., Meletis, E.I.: X-ray absorption spectroscopy, simulation and modeling of Si-DLC films. J. Mater. Sci. 37, 1535–1539 (2002)CrossRefGoogle Scholar
  33. 33.
    Nakanishi, N., Mori, H., Tachikawa, H., Itou, K., Fujioka, M., Funaki, Y.: Investigation of DLC-Si coatings in large-scale production using DC-PACVD equipment. Surf. Coat. Technol. 200, 4277–4281 (2006)CrossRefGoogle Scholar
  34. 34.
    Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  35. 35.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  36. 36.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892(R) (1990)CrossRefGoogle Scholar
  37. 37.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  38. 38.
    Henkelman, G., Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)CrossRefGoogle Scholar
  39. 39.
    Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)CrossRefGoogle Scholar
  40. 40.
    Löwdin, P.O.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365–375 (1950)CrossRefGoogle Scholar
  41. 41.
    Lide, D.R.: Handbook of chemistry and physics. CRC Press, Boca Raton (2002)Google Scholar
  42. 42.
    Zilibotti, G., Righi, M.C., Ferrario, M.: Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Phys. Rev. B 79, 075420 (2009)CrossRefGoogle Scholar
  43. 43.
    Kajita, S., Minato, T., Kato, H.S., Kawai, M., Nakayama, T.: First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. J. Chem. Phys. 127, 104709 (2007)CrossRefGoogle Scholar
  44. 44.
    Sprik, M.: Ab initio molecular dynamics simulation of liquids and solutions. J. Phys.: Condens. Matter 8, 9405–9409 (1996)Google Scholar
  45. 45.
    Johnson, E.R., DiLabio, G.A.: Structure and binding energies in van der Waals dimers: comparison between density functional theory and correlated ab initio methods. Chem. Phys. Lett. 419, 333–339 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan
  2. 2.Istituto NanoscienzeCNR-Consiglio Nazionale delle RicercheModenaItaly

Personalised recommendations