Skip to main content
Log in

Influence of Potential Shape on Constant-Force Atomic-Scale Sliding Friction Models

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The majority of atomic-scale friction models in which sliding is proposed to occur over the atomic-scale energy corrugation at the sliding interface assume a simple sinusoidal potential. An analysis of these models shows that the energy barrier is reduced by the imposition of an external force F, becoming zero at a critical force defined as F*. It was first suggested by Prandtl that the energy barrier approaches a limiting value with a force dependence that is proportional to \(\left( {F^{*} - F} \right)^{{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}}\). In order to explore the effects of the shape of the energy potential on the sliding behavior, this model is analyzed for constant-force sliding with a non-sinusoidal potential of the form \(\sin^{n} \left( {\frac{\pi x}{a}} \right)\), where n is an even integer ≥2. The same asymptotic dependence is found as suggested by Prandtl, where the proportionality constant depends on the shape of the potential. These results are used to calculate the velocity and temperature dependences of sliding friction for constant-force sliding over non-sinusoidal surface potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  Google Scholar 

  2. Tomlinson, G.A.: A molecular theory of friction. Phil. Mag. 7, 905–939 (1929)

    Article  Google Scholar 

  3. Erlandsson, R., Hadziioannou, G., Mate, C.M., McClelland, G.M., Chiang, S.: Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J. Chem. Phys. 89(8), 5190–5193 (1988)

    Article  Google Scholar 

  4. Meyer, E.: Atomic force microscopy. Prog. Surf. Sci. 41(1), 3–49 (1992)

    Article  Google Scholar 

  5. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84(6), 1172–1175 (2000)

    Article  Google Scholar 

  6. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys.: Condens. Matter 13(31), R619–R642 (2001)

    Google Scholar 

  7. Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10(1), 51–56 (2001)

    Article  Google Scholar 

  8. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  Google Scholar 

  9. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  Google Scholar 

  10. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80, 153408 (2009)

    Article  Google Scholar 

  11. Perez, D., Dong, Y.L., Martini, A., Voter, A.F.: Rate theory description of atomic stick-slip friction. Phys. Rev. B 81, 245415 (2010)

    Article  Google Scholar 

  12. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4(4), 283–291 (1936)

    Article  Google Scholar 

  13. Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62(11), 3113–3125 (1940)

    Article  Google Scholar 

  14. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3(2), 107–115 (1935)

    Article  Google Scholar 

  15. Bell, G.: Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978)

    Article  Google Scholar 

  16. Konda, S.S.M., Brantley, J.N., Bielawski, C.W., Makarov, D.E.: Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135(16), 164103–164108 (2011)

    Article  Google Scholar 

  17. Schallamach, A.: The velocity and temperature dependence of rubber friction. Proc. Phys. Soc. London, Sect. B 66(5), 386–392 (1953)

    Article  Google Scholar 

  18. Schallamach, A.: A theory of dynamic rubber friction. Wear 6(5), 375–382 (1963)

    Article  Google Scholar 

  19. Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67, 066110 (2003)

    Article  Google Scholar 

  20. Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction dynamics of confined weakly adhering boundary layers. Langmuir 24(8), 3857–3866 (2008)

    Article  Google Scholar 

  21. Briscoe, B.J., Evans, D.C.B.: The Shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. A Math. Phys. Sci. 380(1779), 389–407 (1982)

    Article  Google Scholar 

  22. Tobolsky, A., Eyring, H.: Mechanical properties of polymeric materials. J. Chem. Phys. 11(3), 125–134 (1943)

    Article  Google Scholar 

  23. Dickinson, J.T., Park, N.S., Kim, M.W., Langford, S.C.: A scanning force microscope study of a tribochemical system: stress-enhanced dissolution. Tribol. Lett. 3(1), 69–80 (1997)

    Article  Google Scholar 

  24. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8(2), 108–112 (2013)

    Article  Google Scholar 

  25. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)

    Article  Google Scholar 

  26. Jacobs, T.B., Gotsmann, B., Lantz, M., Carpick, R.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257–271 (2010)

    Article  Google Scholar 

  27. Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113(18), 8249–8252 (2000)

    Article  Google Scholar 

  28. Liu, X.-Z., Ye, Z., Dong, Y., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)

    Article  Google Scholar 

  29. Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 1–14 (2015)

    Article  Google Scholar 

  30. Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011)

    Article  Google Scholar 

  31. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39(2), 177–180 (2010)

    Article  Google Scholar 

  32. Dong, Y., Perez, D., Gao, H., Martini, A.: Thermal activation in atomic friction: revisiting the theoretical analysis. J. Phys.: Condens. Matter 24, 265001 (2012)

    Google Scholar 

  33. Manzi, S., Tysoe, W., Furlong, O.: Temperature dependences in the Tomlinson/Prandtl model for atomic sliding friction. Tribol. Lett. 55(3), 363–369 (2014)

    Article  Google Scholar 

  34. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367–386 (2011)

    Article  Google Scholar 

  35. Djiha Tchaptchet, E., Djuidje Kenmoe, G.: Velocity and forced excitation effects on atomic friction force with deformable substrate. Nonlinear Dyn. 1–9 (2015). doi:10.1007/s11071-015-2210-2

  36. Gnecco, E., Bennewitz, R., Socoliuc, A., Meyer, E.: Friction and wear on the atomic scale. Wear 254(9), 859–862 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation for support of this work under Grant No. CMMI-1265742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furlong, O.J., Manzi, S.J., Martini, A. et al. Influence of Potential Shape on Constant-Force Atomic-Scale Sliding Friction Models. Tribol Lett 60, 21 (2015). https://doi.org/10.1007/s11249-015-0599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0599-x

Keywords

Navigation