Tribology Letters

, 60:19 | Cite as

Analysis of the Velocity Distribution of an Elliptic Surface Structure Manufactured by Machine Hammer Peening

  • D. TrauthEmail author
  • A. Feuerhack
  • P. Mattfeld
  • F. Klocke
Original Paper


Machine hammer peening (MHP) is an incremental forming process for surface structuring of technical workpieces or tools. Currently, MHP strongly attracts the attention of automotive and toolmaking industry. Recently performed research showed improved tribological characteristics in lubricated deep drawing in terms of a reduced friction coefficient due to a lubricant pocket effect and a reduced contact area. In order to design the MHP process to obtain an optimized load capacity of the fluid film, the velocity distribution has to be analyzed. Thus, an analytic approach for solving the Reynolds equation as a valid simplification of the Navier–Stokes equations for an elliptic geometry of a MHP structure is proposed in this work. The research assumes stationary hydrodynamic lubrication and is restricted to the longitudinal properties. Thereby, the influence of the structure geometry, the fluid film thickness, the sliding velocity and the dynamic viscosity on the fluid velocity distribution is researched by means of an analytic solution of the Reynolds equation. The derived formula is applied to contribute to the understanding in lubricated deep drawing with MHP structures, but is also transferable on further sliding contacts, e.g. bearing lubrication.


Machine hammer peening Surface engineering Hydrodynamic fluid velocity Reynolds equation  



This work was partly supported by the European Union, Investing in our Future, European Regional Development Fund within the Initiative Ziel2.NRW [Grant Number: 21060207612] and the German Research Foundation (DFG) [Grant Number: KL 500/135-1].


  1. 1.
    Trauth, D., Klocke, F., Schongen, F., Shirobokov, A.: Analyse und Modellierung der Schlagkraft beim elektro-dynamischen Festklopfen zur kraftbasierten Prozessauslegung. UTFScience 3, 1–8 (2013)Google Scholar
  2. 2.
    Steitz, M., Scheil, J., Müller, C., Groche, P.: Effect of process parameters on surface roughness in hammer peening and deep rolling. Key Eng Mat 554–557, 1887–901 (2013)CrossRefGoogle Scholar
  3. 3.
    Klocke, F., Trauth, D., Schongen, F., Terhorst, M.: Time-efficient process design of machine hammer peening—prediction of the surface layer state using similitude theory. Wt Online 10, 758–763 (2013)Google Scholar
  4. 4.
    Scheil, J., Müller, C., Steitz, M., Groche, P.: Influence of process parameters on surface hardening in hammer peening and deep rolling. Key Eng. Mat. 554–557, 1819–1827 (2013)CrossRefGoogle Scholar
  5. 5.
    Wied, J.: Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen. PHD-Thesis, Darmstadt (2011)Google Scholar
  6. 6.
    Lienert, F., Hoffmeister, J., Schulze, V.: Residual stress depth distribution after piezo peening of quenched and tempered AISI 4140. Mat. Sci. Forum 768–769, 526–533 (2013)CrossRefGoogle Scholar
  7. 7.
    Löcker, C.: Working, smoothing and cold-hardening of the surface of tools, machine parts or other parts comprises hammering the surface with an electromagnetically controlled hammer head, German Patent DE102006033004A1 (2006)Google Scholar
  8. 8.
    Löcker, C.: Method and device for the technique of cold microforging any freely formed 3D surfaces. United States Patent US 8 166 793 B2 (2012)Google Scholar
  9. 9.
    Bleicher, F., Lechner, C., Habersohn, C., Kozeschnik, E., Adjassoho, B., Kaminiski, H.: Mechanism of surface modification using machine hammer peening technology. CIRP Ann. Manuf. Tech. 61(1), 375–378 (2012)CrossRefGoogle Scholar
  10. 10.
    Bleicher, F., Lechner, C., Habersohn, C., Obermair, M., Heindl, F., Ripoll, M.R.: Improving the tribological characteristics of tool and mould surfaces by machine hammer peening. CIRP Ann. Manuf. Tech. 62(1), 23942 (2013)CrossRefGoogle Scholar
  11. 11.
    Ripoll, M.R., Heindl, F., Lechner, C., Habersohn, C., Jech, M., Bleicher, F.: Improving wear resistance of functional surfaces using the machine hammer peening technique. Tribol. Mat. Surf. Interf. 8(1), 21–26 (2014)CrossRefGoogle Scholar
  12. 12.
    Lechner, C., Bleicher, F., Habersohn, C., Bauer, C., Goessinger, S.: The use of machine hammer peening for smoothing and structuring of surfaces. Ann. DAAAM 23(1), 1–6 (2012)Google Scholar
  13. 13.
    Steitz, M., Philipp, S., Groche, P.: Influence of hammer-peened surface textures on friction behavior. Tribol. Lett. 58(24), 1–8 (2015)Google Scholar
  14. 14.
    Trauth, D., Klocke, F., Welling, D., Terhorst, M., Mattfeld, P., Klink, A.: Investigation of the surface integrity and fatigue strength of Inconel718 after wire edm and machine hammer peening. J. Mater. Form. Accepted June 2006Google Scholar
  15. 15.
    Klocke, F., Trauth, D., Schongen, F., Shirobokov, A.: Analysis of friction between stainless steel sheets and machine hammer peened structured tool surfaces: experimental and numerical investigation of the lubricated interaction gap. Prod. Eng. 8(3), 263–272 (2014)CrossRefGoogle Scholar
  16. 16.
    Klocke, F., Trauth, D., Terhorst, M., Mattfeld, P.: Wear analysis of tool surfaces structured by machine hammer peening for foil-free forming of stainless steel. Adv. Mater. Res. 1018, 317–324 (2014)CrossRefGoogle Scholar
  17. 17.
    Klocke, F., Trauth, D., Terhorst, M., Mattfeld, P.: Determination of the work of adhesion and spreading pressure between lubricants and machine hammer peened surface structures. J. Tribol. 137(2), 1–7 (2015)Google Scholar
  18. 18.
    Launda, L.D.: Lehrbuch der theoretischen Physik: Hydrodynamik. Verlag Harrio Deutsch, Frankfurt (1991)Google Scholar
  19. 19.
    Falkovich, G.: Fluid Mechanics: A Short Course for Physicists. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  20. 20.
    Reynolds O.: Theorie der Schmiermittelreibung. In. Ostwald W, editor. Ostwalds Klassiker der exakten Wissenschaften, Akademische Verlagsgesellschaft, Leipzig (1927)Google Scholar
  21. 21.
    Bower, G.S.: Film lubrication of parallel thrust surfaces. Proc. IMechE 155, 49 (1946)CrossRefGoogle Scholar
  22. 22.
    Lord Rayleigh, O.M.F.R.S.: Notes on the theory of lubrication. Philos. Mag. J. Sci. 35, 1–12 (1918)CrossRefGoogle Scholar
  23. 23.
    Kettleborough, C.F.: An approximate analytical solution for the stepped bearing. J. Appl. Mech. 28(4), 507–510 (1961)CrossRefGoogle Scholar
  24. 24.
    Charnes, A., Saibel, E.: On the solution of the reynolds equation for slider-bearing lubrication I. Trans. ASME 74, 867–873 (1952)Google Scholar
  25. 25.
    Frössel, W.: Berechnung axialer Gleitlager mit balligen Gleitflächen. Konstruktion 13, 253–67 (1961)Google Scholar
  26. 26.
    Charnes, A., Saibel, E., Ying, A.S.C.: On the solution of the reynolds equation for slider-bearing lubrication III, effect of transverse curvature. Trans. ASME 75, 13–507 (1953)Google Scholar
  27. 27.
    Raimondi, A.A.: The influence of longitudinal and transverse profile on the load capacity of pivoted pad bearings. Trans. ASLE 3(2), 265–276 (1960)CrossRefGoogle Scholar
  28. 28.
    Wilcock, D.F.: The hydrodynamic pocket bearing. Trans. ASME 77, 19–311 (1955)Google Scholar
  29. 29.
    Kettleborough, C.F.: The hydrodynamic pocket thrust-bearing. Proc. IMechE 170, 44–535 (1956)CrossRefGoogle Scholar
  30. 30.
    Brizmer, V., Kligerman, Y., Etison, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46(3), 397–403 (2003)CrossRefGoogle Scholar
  31. 31.
    Brizmer, V., Kligerman, Y.: A laser surface textured journal bearing. J. Tribol. 134(3), 031702–031702-9 (2012)CrossRefGoogle Scholar
  32. 32.
    Dobrica, M.B., Fillon, M.: Thermohydrodynamic behavior of a slider pocket bearing. J. Tribol. 128(2), 312–328 (2006)CrossRefGoogle Scholar
  33. 33.
    Dobrica, M.B., Fillon, M., Pascovici, M.D., Cicone, T.: Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. Proc. IMechE Part. J: J. Eng. Tribol. 224(8), 737–750 (2010)CrossRefGoogle Scholar
  34. 34.
    Ramesh, A., Akram, W., Mishra, S.P., Cannon, A.H., Polycarpou, A.A., King, W.P.: Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication. Tribol. Int. 57(1), 170–176 (2013)CrossRefGoogle Scholar
  35. 35.
    Han, J., Fang, L., Sun, J., Ge, S.: Hydrodynamic lubrication of microdimple textured surface using three-dimensional CFD. Tribol. Trans. 53(6), 860–870 (2010)CrossRefGoogle Scholar
  36. 36.
    Fowell, M.T., Olver, A.V., Spikes, H.A., Pegg, I.G.: Modelling of Micro Textured Bearings With Mass conserving cavitation, a two dimensional problem. Proceedings of the STLE/ASME International Joint Tribology Conference 1-3 (2008)Google Scholar
  37. 37.
    Olver, A.V., Fowell, M.T., Spikes, H.A., Pegg, I.G.: ’Inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings. J. Tribol. 220(2), 105–108 (2006)Google Scholar
  38. 38.
    Fowell, M., Olver, A.V., Gosman, A.D., Spikes, H.A., Pegg, I.: Entrainment and Inlet Suction: Two Mechanisms of Hydrodynamic Lubrication in Textured Bearings. ASME J. Tribol. 129(2), 336–348 (2007)CrossRefGoogle Scholar
  39. 39.
    Bertocchi, L., Dini, D., Giacopini, M., Fowell, M.T., Baldini, A.: Fluid film lubrication in the presence of cavitation: a mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids. Tribol. Int. 67, 61–71 (2013)CrossRefGoogle Scholar
  40. 40.
    Giacopini, M., Fowell, M.T., Dini, D., Strozzi, A.: A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. ASME J. Tribol. 132, 041702–041714 (2010)CrossRefGoogle Scholar
  41. 41.
    Ausas, R., Jai, M., Buscaglia, G.: A mass-conserving algorithm for dynamical lubrication problems with cavitation. ASME J. Tribol. 131, 031702-1–031702-7 (2009)CrossRefGoogle Scholar
  42. 42.
    Buscaglia, G.C., Ciuperca, I., Jai, M.: The effect of periodic textures on the static characteristics of thrust bearings. J. Tribol. 127, 1–4 (2005)CrossRefGoogle Scholar
  43. 43.
    Buscaglia, G.C., Ciuperca, I., Jai, M.: On the optimization of surface textures for lubricated contacts. J. Math. Anal. Appl. 335, 1309–27 (2007)CrossRefGoogle Scholar
  44. 44.
    Scaraggi, M.: Optimal textures for increasing the load support in a thrust bearing pad geometry. Tribol. Lett. 53(1), 127–143 (2014)CrossRefGoogle Scholar
  45. 45.
    Scaraggi, M.: Partial surface texturing: a mechanism for local flow reconditioning in lubricated contacts. J. Eng. Tribol. (2014)Google Scholar
  46. 46.
    Medina, S., Fowell, M.T., Vladescu, S.-C., Reddyhoff, T., Pegg, I., Olver, A.V., Dini, D.: Transient effects in lubricated textured bearings. J. Eng. Tribol. 229, 523–537 (2015)Google Scholar
  47. 47.
    Checo, H., Jaramillo, A., Jai, M., Buscaglia, G.C.: Texture-induced cavitation bubbles and friction reduction in the Elrod–Adams model. J. Eng. Tribol. 229, 478–492 (2015)Google Scholar
  48. 48.
    Jacobs, G.: Tribology, Issue 10/2011. Schumacher-Verlag, Herzogenrath (2012)Google Scholar
  49. 49.
    Reynolds, O.: On the theory of lubrication. Philos. Trans. R. Soc. Lond. 177, 157–237 (1886)CrossRefGoogle Scholar
  50. 50.
    Lechner, C.: Oberflämodifikation unter Einsatz der Technologie des Schlagverdichtens (Machine Hammer Peening). PHD-Thesis Wien (2014)Google Scholar
  51. 51.
    Bronstein, I.N., Semendjajew, K.A., Musiol, G., Mühlig, H.: Taschenbuch der Mathematik. Verlag Harri Deutsch 6, 1056–1057 (2005)Google Scholar
  52. 52.
    Dobrica, M.B., Fillon, M.: About the validity of Reynolds equation and inertia effects in textured sliders of infinite width. Proc. IMechE Part J: J. Engineering. Tribology 223(1), 69–78 (2009)Google Scholar
  53. 53.
    Dowson, D.: Leeds-lyon symposium on tribology: cavitation and related phenomena in lubrication 1st: Proceedings. Institution of Mechanical Engineers (1975)Google Scholar
  54. 54.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, Oxford (1995)Google Scholar
  55. 55.
    Brown, S.R., Hamilton, G.M.: Negative pressures under a lubricated piston ring. J. Mech. Eng. Sci. 49–57 (1979)Google Scholar
  56. 56.
    Kaneko, S., Yuji, H., Hiroki, I.: Analysis of oil-film pressure distribution in porous journal bearing under hydrodynamic lubrication conditions using an improved boundary condition. Proceedings of the 1996 ASME/STLE Joint Tribology Conference 1–8 (1996)Google Scholar
  57. 57.
    Wissussek, D.: Das hydrodynamische Druckprofil im Radialgleitlager und sein Einfluss auf die Tragfaehigkeit bei Variation des Umgebungsdruckes. Fortschritt-Berichte der VDI-Zeitschriften, Reihe 4: Bauingenieurwesen. (1978)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations