Friction Modifier Additives


The need for energy efficiency is leading to the growing use of additives that reduce friction in thin film boundary and mixed lubrication conditions. Several classes of such friction modifier additive exist, the main ones being organic friction modifiers, functionalised polymers, soluble organo-molybdenum additives and dispersed nanoparticles. All work in different ways. This paper reviews these four main types of lubricant friction modifier additive and outlines their history, research and the mechanisms by which they are currently believed to function. Aspects of their behaviour that are still not yet fully understood are highlighted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007-present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014)

    Article  Google Scholar 

  2. 2.

    Reynolds, O.: On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc. R. Soc. Lond. 40, 191–203 (1886)

    Article  Google Scholar 

  3. 3.

    Lanchester, F.W.: Communicated remarks to discussion on lubrication. Proc. Phys. Soc. Lond. 32, 29s–33s (1919)

    Google Scholar 

  4. 4.

    Wells, H.M., Southcombe, J.E.: The theory and practice of lubrication: the “Germ” process. J. Soc. Chem. Ind. 39, 51T–60T (1920)

    Article  Google Scholar 

  5. 5.

    Kingsbury, A.A.: New type of oil-testing machine and some of its results. Trans. ASME 24, 143–160 (1903)

    Google Scholar 

  6. 6.

    Deeley, M.: Oiliness and lubrication; Discussion on lubrication. Proc. Phys. Soc. Lond. 32, 1s–11s (1919)

    Article  Google Scholar 

  7. 7.

    Langmuir, I.: The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 1, 62–74 (1920)

    Article  Google Scholar 

  8. 8.

    Hardy, H.B., Doubleday, I.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. A100, 550–557 (1922)

    Article  Google Scholar 

  9. 9.

    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1971)

    Google Scholar 

  10. 10.

    Hersey, M.D.: Theory of lubrication. In: The problem of oiliness. Wiley, New York (1936)

  11. 11.

    Allen, C.M., Drauglis, E.: Boundary layer lubrication: monolayer or multilayer. Wear 14, 363–384 (1969)

    Article  Google Scholar 

  12. 12.

    Bray, U.B., Moore, C.C., Merrill, D.R.: Improvements in diesel-engine lubricating oils. SAE Technical Paper No. 390125 (1939)

  13. 13.

    Prutton, C.F., Frey, D.R., Turnbull, D., Dlouhy, G.: Corrosion of metals by organic acids in hydrocarbon solvents. Ind. Eng. Chem. 37, 90–100 (1945)

    Article  Google Scholar 

  14. 14.

    Cantrell, T.L., Peters, J.G., Smith, H.G.: Mineral oil compositions containing amidic acids or salts thereof. US Patent No. 2,699,427, 11 Jan 1955

  15. 15.

    Eckert, G.W.: Adducts of aliphatic monocarboxylic acids and aliphatic amines in gasoline. US Patent No. 3,055,746, 25 Sept 1962

  16. 16.

    Schick, J.W., Kaminski, J.M.: Lubricant composition for reduction of fuel consumption in internal combustion engines. US Patent No. 4,304,678, 8 Dec 1981

  17. 17.

    Puddington, I.E., Sirianni, A.F.: Friction reducing additives for lubricants. US Patent No. 2,689,224, 14 Sept 1954

  18. 18.

    Hiebert, J., Rowe, C.N., Rudnick, L.R.: Alkylated citric acid adducts as antiwear and friction modifying additives. US Patent No. 5,338,470, 16 Aug 1994

  19. 19.

    Kocsis, J., Vilardo, J.S., Brown, J.R., Barrer, D.E., Vickerman, R.J., Mosier, P.E.: Tartaric acid derivatives in fuel compositions. US Patent 8,133,290, 13 March 2012

  20. 20.

    Heinz, W.E., Schiermeier, K.F.: Corrosion inhibiting composition. US Patent No. 2,482,517, 20 Sept 1949

  21. 21.

    Haviland, M.L., Goodwin, M.C.: Fuel economy improvements with friction-modified engine oils in Environmental Protection Agency and road tests. SAE Technical Paper No. 790945 (1979)

  22. 22.

    Dasai, M.: Lubricating oil composition. US Patent 5064546 (1991)

  23. 23.

    Horodysky, A.G., Gemmill, Jr. R.M.: Mixed borate esters and their use as lubricant and fuel additives. US Patent No. 4,472,289, 18 Sept 1984

  24. 24.

    Bowden, F.P., Leben, L.: The friction of lubricated metals. Philos. Trans. R. Soc. Lond. A239, 1–27 (1940)

    Article  Google Scholar 

  25. 25.

    Spikes, H.A., Cameron, A.: A comparison of adsorption and boundary lubricant failure. Proc. R. Soc. Lond. A336, 407–419 (1974)

    Article  Google Scholar 

  26. 26.

    Okabe, H., Masuko, M., Sakurai, K.: Dynamic behavior of surface-adsorbed molecules under boundary lubrication. ASLE Trans. 24, 467–473 (1981)

    Article  Google Scholar 

  27. 27.

    Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)

    Article  Google Scholar 

  28. 28.

    Hardy, W., Bircumshaw, I.: Bakerian lecture. Boundary lubrication. Plane surfaces and the limitations of Amontons’ law. Proc. Roy. Soc. Lond. A108, 1–27 (1925)

    Article  Google Scholar 

  29. 29.

    Beare, W.G., Bowden, F.P.: Physical properties of surfaces. I. Kinetic friction. Philos. Trans. R. Soc. Lond. A234, 329–354 (1935)

    Article  Google Scholar 

  30. 30.

    Bowden, F.P., Gregory, J.N., Tabor, D.: Lubrication of metal surfaces by fatty acids. Nature 15, 97–101 (1945)

    Article  Google Scholar 

  31. 31.

    Jahanmir, S.: Chain length effects in boundary lubrication. Wear 102, 331–349 (1985)

    Article  Google Scholar 

  32. 32.

    Studt, P.: Boundary lubrication: adsorption of oil additives on steel and ceramic surfaces and its influence on friction and wear. Tribol. Int. 22, 111–119 (1989)

    Article  Google Scholar 

  33. 33.

    Cottington, R.L., Shafrin, E.G., Zisman, W.A.: Physical properties of monolayers at the solid/air interface. III. Friction and durability of films on stainless steel. J. Phys. Chem. 62, 513–518 (1958)

    Article  Google Scholar 

  34. 34.

    Jahanmir, S., Beltzer, M.: Effect of additive molecular structure on friction coefficient and adsorption. Trans. ASME J. Tribol. 108, 109–116 (1986)

    Article  Google Scholar 

  35. 35.

    Campen, S.M.: Fundamentals of organic friction modifier behaviour. PhD Thesis, Imperial College London (2012)

  36. 36.

    Whitehead, J.R.: Surface deformation and friction of metals at light loads. Proc. R. Soc. Lond. A201, 109–124 (1950)

    Article  Google Scholar 

  37. 37.

    Deryaguin, B.V., Karassev, V.V., Zakhavaeva, N.N., Lazarev, V.P.: The mechanism of boundary lubrication and the properties of the lubricating film: short- and long-range action in the theory of boundary lubrication. Wear 1, 277–290 (1958)

    Article  Google Scholar 

  38. 38.

    Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)

    Article  Google Scholar 

  39. 39.

    Frewing, J.J.: The influence of temperature on boundary lubrication. Proc. R. Soc. Lond. A181, 23–42 (1942)

    Article  Google Scholar 

  40. 40.

    Bowden, F.P., Gregory, J.N., Tabor, D.: Lubrication of metal surfaces by fatty acids. Nature 156, 97–101 (1945)

    Article  Google Scholar 

  41. 41.

    Salem, L.: Attractive forces between long saturated chains at short distances. J. Chem. Phys. 37, 2100–2113 (1962)

    Article  Google Scholar 

  42. 42.

    Beltzer, M., Jahanmir, S.: Role of dispersion interactions between hydrocarbon chains in boundary lubrication. ASLE Trans. 30, 47–54 (1987)

    Article  Google Scholar 

  43. 43.

    Studt, P.: The influence of the structure of isomeric octadecanols on their adsorption from solution on iron and their lubricating properties. Wear 70, 329–334 (1981)

    Article  Google Scholar 

  44. 44.

    Bowden, F.P., Moore, A.C.: Physical and chemical adsorption of long chain compounds on radioactive metals. Trans. Faraday Soc. 47, 900–908 (1951)

    Article  Google Scholar 

  45. 45.

    Cook, H.D., Ries Jr, H.: Adsorption of radiostearic acid and radiostearyl alcohol from n-hexadecane onto solid surfaces. J. Phys. Chem. 63, 226–230 (1959)

    Article  Google Scholar 

  46. 46.

    Gaines, G.L.: Some observations on monolayers of carbon-14 labeled stearic acid. J. Colloid Sci. 15, 321–339 (1960)

    Article  Google Scholar 

  47. 47.

    Block, A., Simms, B.B.: Desorption and exchange of adsorbed octadecylamine and stearic acid on steel and glass. J. Colloid Interface Sci. 25, 514–518 (1967)

    Article  Google Scholar 

  48. 48.

    Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1, 45–52 (1985)

    Article  Google Scholar 

  49. 49.

    Hutchinson, E.: On adsorption and lubrication at crystal surfaces. Part II. On the adsorption of paraffin chain compounds on sodium nitrate. Trans. Faraday Soc. 43, 439–442 (1947)

    Article  Google Scholar 

  50. 50.

    Greenhill, E.B.: The adsorption of long chain polar compounds from solution on metal surfaces. Trans. Faraday Soc. 45, 625–631 (1949)

    Article  Google Scholar 

  51. 51.

    Daniel, S.G.: The adsorption on metal surfaces of long chain polar compounds from hydrocarbon solutions. Trans. Faraday Soc. 47, 1345–1359 (1951)

    Article  Google Scholar 

  52. 52.

    Hirst, W., Lancaster, J.K.: Effect of water on the interaction between stearic acid and fine powders. Trans. Faraday Soc. 47, 315–322 (1951)

    Article  Google Scholar 

  53. 53.

    Askwith, T.C., Cameron, A., Crouch, R.F.: Chain length of additives in relation to lubricants in thin film and boundary lubrication. Proc. R. Soc. Lond. A291, 500–519 (1966)

    Article  Google Scholar 

  54. 54.

    Grew, W., Cameron, A.: Friction transition temperature effect of matching surfactant and carrier. Nature 214, 429–430 (1967)

    Article  Google Scholar 

  55. 55.

    Okabe, H., Kanno, T.: Behavior of polar compounds in lubricating-oil films. ASLE Trans. 24, 459–466 (1981)

    Article  Google Scholar 

  56. 56.

    Hirano, F., Sakai, T., Kuwano, N., Ohno, N.: Chain matching between hydrocarbon and fatty acid as interfacial phenomena. Tribol. Int. 20, 186–204 (1987)

    Article  Google Scholar 

  57. 57.

    Georges, J.M., Tonck, A., Mazuyer, D.: Interfacial friction of wetted monolayers. Wear 175, 59–62 (1994)

    Article  Google Scholar 

  58. 58.

    Zhu, Y., Ohtani, H., Greenfield, M.L., Ruths, M., Granick, S.: Modification of boundary lubrication by oil-soluble friction modifier additives. Tribol. Lett. 15, 127–134 (2003)

    Article  Google Scholar 

  59. 59.

    Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction dynamics of confined weakly adhering boundary layers. Langmuir 24, 3857–3866 (2008)

    Article  Google Scholar 

  60. 60.

    Lundgren, S.M., Ruths, M., Danerlöv, K., Persson, K.: Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J. Colloid Interface Sci. 326, 530–536 (2008)

    Article  Google Scholar 

  61. 61.

    Slough, C.G., Ohtani, H., Everson, M.P., Melotik, D.J.: The effect of friction modifiers on the low-speed friction characteristics of automatic transmission fluids observed with scanning force microscopy. SAE Technical Paper No. 981099 (1998)

  62. 62.

    Ruths, M., Lundgren, S., Danerlöv, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24, 1509–1516 (2008)

    Article  Google Scholar 

  63. 63.

    Cheng, H., Hu, Y.: Influence of chain ordering on frictional properties of self-assembled monolayers (SAMS) in nano-lubrication. Adv. Colloid Interface Sci. 171–172, 53–65 (2012)

    Article  Google Scholar 

  64. 64.

    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM: self-assembly of octadecylamine. Tribol. Lett. 58, 1–15 (2015)

    Article  Google Scholar 

  65. 65.

    Lundgren, S.M., Persson, K., Kronberg, B., Claesson, P.M.: Adsorption of fatty acids from alkane solution studied with quartz crystal microbalance. Tribol. Lett. 22, 15–20 (2006)

    Article  Google Scholar 

  66. 66.

    Ratoi, M., Anghel, V., Bovington, C., Spikes, H.A.: Mechanisms of oiliness additives. Tribol. Int. 33, 241–247 (2000)

    Article  Google Scholar 

  67. 67.

    Campana, M., Teichert, A., Clarke, S., Steitz, R., Webster, J.R., Zarbakhsh, A.: Surfactant adsorption at the metal–oil interface. Langmuir 27, 6085–6090 (2011)

    Article  Google Scholar 

  68. 68.

    Hirayama, T., Torii, T., Konishi, Y., Maeda, M., Matsuoka, T., Inoue, K., Takeda, M.: Thickness and density of adsorbed additive layer on metal surface in lubricant by neutron reflectometry. Tribol. Int. 54, 100–105 (2012)

    Article  Google Scholar 

  69. 69.

    Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1, 52–66 (1985)

    Article  Google Scholar 

  70. 70.

    Marrucci, L., Paparo, D., Cerrone, G., Solimeno, S., Russo, R., Lenza, T.L., Siano, P.: Optical analysis of surfaces by second-harmonic generation: possible applications to tribology. Tribotest 8, 329–337 (2002)

    Article  Google Scholar 

  71. 71.

    Koshima, H., Kamano, H., Hisaeda, Y., Liu, H., Ye, S.: Analyses of the adsorption structures of friction modifiers by means of quantitative structure-property relationship method and sum frequency generation spectroscopy. Tribol. Online 5, 165–172 (2010)

    Article  Google Scholar 

  72. 72.

    Porter, M.D., Bright, T.B., Allara, D.L., Chidseyi, C.E.D.: Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559–3568 (1987)

    Article  Google Scholar 

  73. 73.

    Maoz, R., Sagiv, J.: On the formation and structure of self-assembling monolayers I A comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads. J. Colloid Interface Sci. 100, 465–496 (1984)

    Article  Google Scholar 

  74. 74.

    Tsukruk, V.V., Bliznyuk, V.N., Hazel, J., Visser, D., Everson, M.P.: Organic molecular films under shear forces: fluid and solid Langmuir monolayers. Langmuir 12, 4840–4849 (1996)

    Article  Google Scholar 

  75. 75.

    Bhushan, B., Liu, H.: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM. Phys. Rev. B 63, 245412 (2001)

    Article  Google Scholar 

  76. 76.

    Xiao, X., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 1, 235–237 (1996)

    Article  Google Scholar 

  77. 77.

    Benitez, J.J., Kopta, S., Ogletree, D.F., Salmeron, M.: Preparation and characterization of self-assembled monolayers of octadecylamine on mica using hydrophobic solvents. Langmuir 18, 6096–6100 (2002)

    Article  Google Scholar 

  78. 78.

    Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17, 1970–1974 (2001)

    Article  Google Scholar 

  79. 79.

    Lee, S., Shon, Y.S., Colorado, R., Guenard, R.L., Lee, T.R., Perry, S.S.: The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: a comparison of SAMs derived from normal and spiroalkanedithiols. Langmuir 16, 2220–2224 (2000)

    Article  Google Scholar 

  80. 80.

    Salmeron, M.: Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribol. Lett. 10, 69–79 (2001)

    Article  Google Scholar 

  81. 81.

    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57, 1–20 (2015)

    Article  Google Scholar 

  82. 82.

    Glovnea, R.P., Forrest, A.K., Olver, A.V., Spikes, H.A.: Measurement of sub-nanometer lubricant films using ultra-thin film interferometry. Tribol. Lett. 15, 217–230 (2003)

    Article  Google Scholar 

  83. 83.

    Fraenkel, R., Butterworth, G.E., Bain, C.D.: In situ vibrational spectroscopy of an organic monolayer at the sapphire–quartz interface. J. Am. Chem. Soc. 120, 203–204 (1998)

    Article  Google Scholar 

  84. 84.

    Beattie, D.A., Haydock, S., Bain, C.D.: A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy. Vib. Spectrosc. 24, 109–123 (2000)

    Article  Google Scholar 

  85. 85.

    Jacob, J.D.C., Rittikulsittichai, S., Lee, T.R., Baldelli, S.: Characterization of SAMs derived from octadecyloxyphenylethanethiols by sum frequency generation. J. Phys. Chem. C 117, 9355–9365 (2013)

    Article  Google Scholar 

  86. 86.

    Beattie, D.A., Fraenkel, R., Winget, S.A., Petersen, A., Bain, C.D.: Sum-frequency spectroscopy of a monolayer of zinc arachidate at the solid-solid interface. J. Phys. Chem. B 110, 2278–2292 (2006)

    Article  Google Scholar 

  87. 87.

    Miyake, K., Kume, T., Nakano, M., Korenaga, A., Takiwatari, K., Tsuboi, R., Sasaki, S.: Effects of surface chemical properties on the frictional properties of self-assembled monolayers lubricated with oleic acid. Tribol. Online 7, 218–224 (2012)

    Article  Google Scholar 

  88. 88.

    Simič, R., Kalin, M., Hirayama, T., Korelis, P., Geue, T.: Fatty acid adsorption on several DLC coatings studied by neutron reflectometry. Tribol. Lett. 53, 199–206 (2014)

    Article  Google Scholar 

  89. 89.

    Nakano, K., Spikes, H.A.: Initial process of boundary film formation with fatty acid solution. Tribol. Online 7, 1–7 (2012)

    Article  Google Scholar 

  90. 90.

    Walba, D.M., Liberko, C.A.: Self-assembled monolayers for liquid crystal alignment. US Patent No. 5,596,434, 21 Jan 1997

  91. 91.

    Campen, S., Green, J.H., Lamb, G.D., Atkinson, D., Spikes, H.A.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48, 237–248 (2012)

    Article  Google Scholar 

  92. 92.

    Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 50, 328–335 (2007)

    Article  Google Scholar 

  93. 93.

    Vengudusamy, B.: Behaviour of lubricant additives on DLC coatings. PhD Thesis, Imperial College London (2011)

  94. 94.

    Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., Yec, J., Konishi, S., Takeshima, S., Martin, J.M., De Barros Bouchet, M.I., Le Mogne, T.: Ultralow friction of DLC in presence of glycerol mono-oleate (GMO). Tribol. Lett. 18, 245–251 (2005)

    Article  Google Scholar 

  95. 95.

    Minami, I., Kubo, T., Nanao, H., Mori, S., Sagawa, T., Okuda, S.: Investigation of tribo-chemistry by means of stable isotopic tracers, Part 2: lubrication mechanism of friction modifiers on diamond-like carbon. Tribol. Trans. 50, 477–487 (2007)

    Article  Google Scholar 

  96. 96.

    Glosli, J.N., McClelland, G.M.: Molecular dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett. 70, 1960–1963 (1993)

    Article  Google Scholar 

  97. 97.

    Koike, A., Yoneya, M.: Molecular dynamics simulations of sliding friction of Langmuir–Blodgett monolayers. J. Chem. Phys. 105, 6060–6067 (1996)

    Article  Google Scholar 

  98. 98.

    Koike, A., Yoneya, M.: Effects of molecular structure on frictional properties of Langmuir–Blodgett monolayers. Langmuir 13, 1718–1722 (1997)

    Article  Google Scholar 

  99. 99.

    Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21, 12197–12206 (2005)

    Article  Google Scholar 

  100. 100.

    Wu, C.D., Lin, J.F., Fang, T.H.: Molecular dynamic simulation and characterization of self-assembled monolayer under sliding friction. Comput. Mater. Sci. 39, 808–816 (2007)

    Article  Google Scholar 

  101. 101.

    Moller, M.A., Tildesley, D.J., Kim, K.S., Quirke, N.: Molecular dynamics simulation of a Langmuir–Blodgett film. J. Chem. Phys. 94, 8390–8401 (1991)

    Article  Google Scholar 

  102. 102.

    Doig, M., Camp, P.J.: The structures of hexadecylamine films adsorbed on iron-oxide surfaces in dodecane and hexadecane. Phys. Chem. Chem. Phys. 17, 5248–5255 (2015)

    Article  Google Scholar 

  103. 103.

    Doig, M., Warrens, C.P., Camp, P.J.: Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane. Langmuir 30, 186–195 (2013)

    Article  Google Scholar 

  104. 104.

    Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Martin, J.M., Iovine, R., Obara, Y., Miura, R., Miyamoto, A.: Mixed lubrication with C18 fatty acids: effect of unsaturation. Tribol. Lett. 53, 319–328 (2014)

    Article  Google Scholar 

  105. 105.

    Cameron, A.: A theory of boundary lubrication. ASLE Trans. 2, 195–198 (1959)

    Google Scholar 

  106. 106.

    Drauglis, E., Lucas, A.A., Allen, C.M.: Smectic model for liquid films on solid surfaces. Part 1—application to monolayer boundary lubrication. Spec. Discuss. Faraday Soc. 1, 251–256 (1970)

    Article  Google Scholar 

  107. 107.

    Sutcliffe, M.J., Taylor, S.R., Cameron, A.: Molecular asperity theory of boundary friction. Wear 51, 181–192 (1978)

    Article  Google Scholar 

  108. 108.

    Tabor, D.: The role of surface and intermolecular forces in thin film lubrication. Tribology series. In: Georges, J.M. (ed.) Microscopic Aspects of Adhesion and Lubrication, vol. 7, pp. 651–682. Elsevier, Amsterdam (1982)

    Google Scholar 

  109. 109.

    Dorinson, A.: The slow speed frictional behavior of some lubricant additive type-substances. ASLE Trans. 13, 215–224 (1970)

    Article  Google Scholar 

  110. 110.

    Chugg, K.J., Chaudhri, M.M.: Boundary lubrication and shear properties of thin solid films of dioctadecyl dimethyl ammonium chloride (TA 100). J. Phys. D Appl. Phys. 26, 1993–2000 (1993)

    Article  Google Scholar 

  111. 111.

    Ingram, M., Noles, J., Watts, R., Harris, S., Spikes, H.A.: Frictional properties of automatic transmission fluids: Part 1: measurement of friction-sliding speed behaviour. Tribol. Trans. 54, 145–153 (2011)

    Article  Google Scholar 

  112. 112.

    Drummond, C., Israelachvili, J., Richetti, Ph: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67, 066110 (2003)

    Article  Google Scholar 

  113. 113.

    Yoshizawa, H., Chen, Y.L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  Google Scholar 

  114. 114.

    Spikes, H.A.: The half-wetted bearing. Part 2: potential application in low load contacts. Proc. Inst. Mech. Eng. J. 217, 15–26 (2003)

    Article  Google Scholar 

  115. 115.

    Spikes, H.A.: Slip at the wall—evidence and tribological implications. In: Dowson, D., et al. (ed.) Proceedings of 29th Leeds/Lyon Symposium, Tribological Research and Design for Engineering Systems, pp. 525–535. Elsevier, Amsterdam (2003)

  116. 116.

    Choo, J.H., Spikes, H.A., Ratoi, M., Glovnea, R., Forrest, A.: Friction reduction in low-load hydrodynamic lubrication with a hydrophobic surface. Tribol. Int. 40, 154–159 (2007)

    Article  Google Scholar 

  117. 117.

    Hare, E.F., Zisman, W.A.: Autophobic liquids and the properties of their adsorbed films. J. Phys. Chem. 59, 335–340 (1954)

    Article  Google Scholar 

  118. 118.

    Choo, J.-H., Forrest, A.K., Spikes, H.A.: Influence of organic friction modifier on liquid slip: a new mechanism of organic friction modifier action. Tribol. Lett. 27, 239–244 (2007)

    Article  Google Scholar 

  119. 119.

    Briscoe, B.J., Evans, D.C.B., Tabor, D.: The influence of contact pressure and saponification on the sliding behavior of stearic acid monolayers. J. Colloid Interface Sci. 61, 9–13 (1977)

    Article  Google Scholar 

  120. 120.

    Briscoe, B.J., Tabor, D.: Rheology of thin organic films. ASLE Trans. 17, 158–165 (1974)

    Article  Google Scholar 

  121. 121.

    Cooper, H.S., Damerell, V.R.: Lubricants suitable for various uses. US Patent 2156803 (1939)

  122. 122.

    Risdon, T.J., Gresty, D.A.: An historical review of reductions in fuel consumption of United States and European engines with MoS2. SAE Technical Paper 750674 (1975)

  123. 123.

    White, H.S., Zei, D.: Static friction tests with various metal combinations and special lubricants. J. Res. Nat. Bur. Stand. 46, 292–298 (1951)

    Article  Google Scholar 

  124. 124.

    Gansheimer, J., Holinski, R.: Molybdenum disulfide in oils and greases under boundary conditions. Trans. ASME J. Tribol. 95, 242–246 (1973)

    Google Scholar 

  125. 125.

    Gänsheimer, J., Holinski, R.: A study of solid lubricants in oils and greases under boundary conditions. Wear 19, 439–449 (1972)

    Article  Google Scholar 

  126. 126.

    Hugel, G.: Fragen der Schmierőlforschung. Erdol und Kohle 8, 651–655 (1955)

    Google Scholar 

  127. 127.

    Hugel, G.: Bleu de molybène soluble dans les hydrocarbures. French Patent FR1099953A (1955)

  128. 128.

    Spengler, G., Weber, A.: Über die Schmierfähigkeit organischer Molybdänverbindungen. Chem. Ber. 92, 2163–2171 (1959)

    Article  Google Scholar 

  129. 129.

    Feng, I.M., Perilstein, W.L., Adams, M.R.: Solid film deposition and non-sacrificial boundary lubrication. ASLE Trans. 6, 60–66 (1963)

    Article  Google Scholar 

  130. 130.

    Black, A.L., Dunster, R.W.: Comparative study of surface deposits and behaviour of MoS2 particles and molybdenum dialkyl-dithio-phosphate. Wear 13, 119–132 (1969)

    Article  Google Scholar 

  131. 131.

    Gresty, D.A., Kunz, E.J., Risdon, T.J.: The effect of MoS2 based lubricants on automotive gear efficiency and operating temperatures. SAE Technical Paper 770834 (1977)

  132. 132.

    Braithwaite, E.R., Greene, A.B.: A critical analysis of the performance of molybdenum compounds in motor vehicles. Wear 46, 405–432 (1978)

    Article  Google Scholar 

  133. 133.

    Greene, A.B., Risdon, T.J.: The effect of molybdenum-containing, oil-soluble friction modifiers on engine fuel economy and gear oil efficiency. SAE Technical Paper 811187 (1981)

  134. 134.

    Sakurai, T., Okabe, H., Isoyama, H.: The synthesis of di-μ-thio-dithio-bis (dialkyldithiocarbamates) dimolybdenum (V) and their effects on boundary lubrication. Bull. Jpn. Pet. Inst. 13, 243–249 (1971)

    Article  Google Scholar 

  135. 135.

    Mitchell, P.C.: Oil-soluble Mo–S compounds as lubricant additives. Wear 100, 281–300 (1984)

    Article  Google Scholar 

  136. 136.

    Yamamoto, Y., Gondo, S., Kamakura, T., Tanaka, N.: Frictional characteristics of molybdenum dithiophosphates. Wear 112, 79–87 (1986)

    Article  Google Scholar 

  137. 137.

    Graham, J., Korcek, S., Spikes, H.A.: The friction-reducing properties of molybdenum dialkyldithiocarbamate additives. Part 1. Factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2001)

    Article  Google Scholar 

  138. 138.

    Graham, J.C.H.: The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives. PhD Thesis, University of London (2001)

  139. 139.

    Yamamoto, Y., Gondo, S.: Friction and wear characteristics of molybdenum dithiocarbamate and molybdenum dithiophosphate. Tribol. Trans. 32, 251–257 (1989)

    Article  Google Scholar 

  140. 140.

    Gondo, S., Konishi, M.: Organoamine and organophosphate molybdenum complexes as lubricant additives. Wear 12, 51–60 (1987)

    Google Scholar 

  141. 141.

    Grossiord, C., Varlot, K., Martin, J.M., Le Mogne, Th, Esnouf, C., Inoue, K.: MoS2 Single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)

    Article  Google Scholar 

  142. 142.

    Evans, R.D., Doll, G.L., Hager, C.H., Howe, J.Y.: Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil. Tribol. Lett. 38, 25–32 (2010)

    Article  Google Scholar 

  143. 143.

    Topolovec Miklozic, K., Graham, J., Spikes, H.: Chemical and physical analysis of reaction films formed by molybdenum dialkyldithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001)

    Article  Google Scholar 

  144. 144.

    Unnikrishnan, R., Jain, M.C., Harinarayan, A.K., Mehta, A.K.: Additive–additive interaction: an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives. Wear 252, 240–249 (2002)

    Article  Google Scholar 

  145. 145.

    Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011)

    Article  Google Scholar 

  146. 146.

    Muraki, M., Yanagi, Y., Sakaguchi, K.: Synergistic effect on frictional characteristics under rolling-sliding conditions due to a combination of molybdenum dialkyldithiocarbamate and zinc dialkyldithiophosphate. Tribol. Int. 30, 69–75 (1997)

    Article  Google Scholar 

  147. 147.

    Kasrai, M., Cutler, J.N., Gore, K., Canning, G., Bancroft, G.M., Tan, K.H.: The chemistry of antiwear films generated by the combination of ZDDP and MoDTC examined by X-ray absorption spectroscopy. Tribol. Trans. 41, 69–77 (1998)

    Article  Google Scholar 

  148. 148.

    Martin, J.M., Grossiord, C., Varlot, K., Vacher, B., Igarashi, J.: Synergistic effects in binary systems of lubricant additives: a chemical hardness approach. Tribol. Lett. 8, 193–201 (2000)

    Article  Google Scholar 

  149. 149.

    Graham, J., Jensen, R., Spikes, H.A.: The friction-reducing properties of molybdenum dialkyldithiocarbamate additives. Part 2. Durability of friction reducing capability. Tribol. Trans. 44, 637–646 (2001)

    Article  Google Scholar 

  150. 150.

    Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40, 1696–1704 (2007)

    Article  Google Scholar 

  151. 151.

    Spikes, H.A.: Additive-additive and additive-surface interactions in lubrication. Lubr. Sci. 2, 3–23 (1989)

    Article  Google Scholar 

  152. 152.

    Topolovec-Miklozic, K., Cann, P.M., Spikes, H.A.: The use of AFM to study lubricant films. In: Franek, F., et al. (ed.) Plenary and Session Key Papers. 2nd WTC Conference, Vienna (2001)

  153. 153.

    Ye, J., Kano, M., Yasuda, Y.: Determination of nanostructures and mechanical properties on the surface of molybdenum dithiocarbamate and zinc dialkyl-dithiophosphate tribochemical reacted films using atomic force microscope phase imaging technique. J. Appl. Phys. 93, 5113–5117 (2003)

    Article  Google Scholar 

  154. 154.

    Ye, J., Kano, M., Yasuda, Y.: Evaluation of nanoscale friction depth distribution in ZDDP and MoDTC tribochemical reacted films using a nanoscratch method. Tribol. Lett. 16, 107–112 (2004)

    Article  Google Scholar 

  155. 155.

    Johnson, M.D., Jensen, R.K., Clausing, E.M., Schriewer, K., Korcek, S.: Effects of aging on frictional properties of fuel efficient engine oils. SAE Technical Paper 952532 (1995)

  156. 156.

    Johnson, M.D., Jensen, R.K., Korcek, S.: Base oil effects on friction reducing capabilities of molybdenum dialkyldithiocarbamate containing engine oils. SAE Technical Paper 972860 (1997)

  157. 157.

    Hoshino, K., Kawai, H., Akiyama, K.: Fuel efficiency of SAE 5 W-20 friction modified gasoline engine oil. SAE Technical Paper 982506 (1998)

  158. 158.

    de Barros’ Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)

    Article  Google Scholar 

  159. 159.

    Topolovec-Miklozic, K., Lockwood, F., Spikes, H.: Behaviour of boundary lubricating additives on DLC coatings. Wear 265, 1893–1901 (2008)

    Article  Google Scholar 

  160. 160.

    Shinyoshi, T., Fuwa, Y., Ozaki, Y.: Wear analysis of DLC coating in oil containing Mo-DTC. SAE Technical Paper 2007-01-1969 (2007)

  161. 161.

    Haque, T., Morina, A., Neville, A., Kapadi, R., Arrowsmith, S.: Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions. Wear 266, 147–157 (2009)

    Article  Google Scholar 

  162. 162.

    Vengudusamy, B., Green, J.H., Lamb, G.D., Spikes, H.A.: Behaviour of MoDTC in DLC/DLC and DLC/steel contacts. Tribol. Int. 54, 68–76 (2012)

    Article  Google Scholar 

  163. 163.

    Sugimoto, I., Honda, F., Inoue, K.: Analysis of wear behavior and graphitization of hydrogenated DLC under boundary lubricant with MoDTC. Wear 305, 124–128 (2013)

    Article  Google Scholar 

  164. 164.

    Masuko, M., Ono, T., Aoki, S., Suzuki, A., Ito, H.: Friction and wear characteristics of DLC coatings with different hydrogen content lubricated with several Mo-containing compounds and their related compounds. Tribol. Int. 82, 350–357 (2015)

    Article  Google Scholar 

  165. 165.

    Coffey, T.A., Forster, G.D., Hogarth, G.: Molybdenum(VI) imidodisulfur complexes formed via double sulfur–carbon bond cleavage of dithiocarbamates. J. Chem. Soc., Dalton Trans. 2, 183–193 (1996)

    Article  Google Scholar 

  166. 166.

    Sarin, R., Tuli, D.K., Sureshbabu, A.V., Misra, A.K., Rai, M.M., Bhatnagar, A.K.: Molybdenum dialkylphosphorodithioates: synthesis and performance evaluation as multifunctional additives for lubricants. Tribol. Int. 27, 379–386 (1994)

    Article  Google Scholar 

  167. 167.

    Tanaka, N., Fukushima, A., Tatsumi, Y., Saito, Y.: A molybdenum dithiocarbamate, improved stability and solubility. US Patent 5,627,146, 6 May 1997

  168. 168.

    Tynik, R.J., Donnelly, S.G., Karol, T.J: Additive for lubricating oil compositions, comprising the reaction product of: at least one asymmetrical dialkylamine, carbon disulfide, and a molybdenum source. US Patent 7,763,744, 27 July 2010

  169. 169.

    Yajun, M., Wancheng, Z., Shenghua, L., Yuansheng, J., Yucong, W., Simon, T.: Tribological performance of three advanced piston rings in the presence of MoDTC-modified GF-3 oils. Tribol. Lett. 18, 75–83 (2005)

    Article  Google Scholar 

  170. 170.

    Hu, J.Q., Wei, X.Y., Dai, G.L., Fei, Y.W., Xie, F., Zong, Z.M.: Tribological behaviors and mechanism of sulfur- and phosphorus-free organic molybdate ester with zinc dialkyldithiophosphate. Tribol. Intern. 41, 549–555 (2008)

    Article  Google Scholar 

  171. 171.

    Yan, L., Yue, W., Wang, C., Wei, D., Xu, B.: Comparing tribological behaviors of sulfur- and phosphorus-free organomolybdenum additive with ZDDP and MoDTC. Tribol. Int. 53, 150–158 (2012)

    Article  Google Scholar 

  172. 172.

    Okrent, E.H.: The effect of lubricant viscosity and composition on engine friction and bearing wear. ASLE Trans. 4, 97–108 (1961)

    Article  Google Scholar 

  173. 173.

    Okrent, E.H.: The effect of lubricant viscosity and composition on engine friction and bearing wear. II. ASLE Trans. 4, 257–262 (1961)

    Article  Google Scholar 

  174. 174.

    Cann, P.M., Spikes, H.A.: The behavior of polymer solutions in concentrated contacts: immobile surface layer formation. Tribol. Trans. 37, 580–586 (1994)

    Article  Google Scholar 

  175. 175.

    Georges, J.M., Millot, S., Loubet, J.L., Tonck, A.: Drainage of thin liquid films between relatively smooth surfaces. J. Chem. Phys. 98, 7345–7360 (1993)

    Article  Google Scholar 

  176. 176.

    Smeeth, M., Gunsel, S., Spikes, H.A.: Boundary film formation by viscosity index improvers. Tribol. Trans. 39, 726–734 (1996)

    Article  Google Scholar 

  177. 177.

    Guangteng, G., Smeeth, M., Cann, P.M., Spikes, H.A.: Measurement and modelling of boundary film properties of polymeric lubricant additives. Proc. Inst. Mech. Eng. J. 210, 1–15 (1996)

    Article  Google Scholar 

  178. 178.

    Smeeth, M., Gunsel, S., Spikes, H.A.: Friction and wear reduction by boundary film-forming viscosity index improvers. SAE Technical Paper 962037 (1996)

  179. 179.

    Georges, E., Georges, J.M., Diraison, C.: Rheology of olefinic copolymer layers adsorbed on solid surfaces. Tribol. Trans. 39, 563–570 (1996)

    Article  Google Scholar 

  180. 180.

    Müller, M., Topolovec-Miklozic, K., Dardin, A., Spikes, H.A.: The design of boundary film-forming PMA viscosity modifiers. Tribol. Trans. 49, 225–232 (2006)

    Article  Google Scholar 

  181. 181.

    Fan, J., Stohr, T., Muller, M., Spikes, H.A.: Reduction of friction by functionalized viscosity index improvers. Tribol. Lett. 28, 287–298 (2007)

    Article  Google Scholar 

  182. 182.

    Munch, M.R., Gast, A.P.: A study of block copolymer adsorption kinetics via internal reflection interferometry. J. Chem. Soc., Faraday Trans. 86, 1341–1348 (1990)

    Article  Google Scholar 

  183. 183.

    Chevalier, Y., Fixari, B., Brunel, S., Marie, E., De Guio, P.: Review: the adsorption of functional polymers from their organic solutions: applications to fuel additives. Polym. Int. 53, 475–483 (2004)

    Article  Google Scholar 

  184. 184.

    Brittain, W.J., Minko, S.: A structural definition of polymer brushes. J. Polym. Sci. A Polym. Chem. 45, 3505–3512 (2007)

    Article  Google Scholar 

  185. 185.

    Muller, M., Fan, J., Spikes, H.A.: Design of functionalised PAMA viscosity modifiers to reduce friction and wear in lubricating oils. ASTM Int. 4, Paper ID JAI100956 (2007)

  186. 186.

    Muller, M., Fan, J., Spikes, H.A.: Influence of polymethacrylate viscosity index improvers on friction and wear of lubricant formulations. SAE Technical Paper 2007-01-1985 (2007)

  187. 187.

    Thompson, L, Randles, S.J., Boyde, S., Gamwell, J., Readman, N.: Friction reducing additive. US Patent Appl. 13/582,589, 3 March 2011

  188. 188.

    Lee, S., Müller, M., Ratoi-Salagean, M., Vörös, J., Pasche, S., De Paul, S.M., Spikes, H.A., Textor, M., Spencer, N.D.: Boundary lubrication of oxide surfaces by poly(l-lysine)-g-poly (ethylene glycol)(PLL-g-PEG) in aqueous media. Tribol. Lett. 15, 231–239 (2003)

    Article  Google Scholar 

  189. 189.

    Müller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly (ethylene glycol)(PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003)

    Article  Google Scholar 

  190. 190.

    Yan, X., Perry, S.S., Spencer, N.D., Pasche, S., De Paul, S.M., Textor, M., Lim, M.S.: Reduction of friction at oxide interfaces upon polymer adsorption from aqueous solutions. Langmuir 20, 423–428 (2004)

    Article  Google Scholar 

  191. 191.

    Müller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005)

    Article  Google Scholar 

  192. 192.

    Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370, 634–636 (1994)

    Article  Google Scholar 

  193. 193.

    Kreer, T., Müser, M.H., Binder, K., Klein, J.: Frictional drag mechanisms between polymer-bearing surfaces. Langmuir 17, 7804–7813 (2001)

    Article  Google Scholar 

  194. 194.

    Klein, J.: Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. J. 220, 691–710 (2006)

    Article  Google Scholar 

  195. 195.

    Klein, J., Kumacheva, E., Perahia, D., Fetters, L.J.: Shear forces between sliding surfaces coated with polymer brushes: the high friction regime. Acta Polym. 49, 617–625 (1998)

    Article  Google Scholar 

  196. 196.

    Nomura, A., Okayasu, K., Ohno, K., Fukuda, T., Tsujii, Y.: Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44, 5013–5019 (2011)

    Article  Google Scholar 

  197. 197.

    Bielecki, R.M., Benetti, E.M., Kumar, D., Spencer, N.D.: Lubrication with oil-compatible polymer brushes. Tribol. Lett. 45, 477–487 (2012)

    Article  Google Scholar 

  198. 198.

    Mitsui, H., Spikes, H.A.: Predicting EHD film thickness of lubricant polymer solutions. Tribol. Trans. 41, 1–10 (1998)

    Article  Google Scholar 

  199. 199.

    Mertes, R.W.: Modified lubricating oil. US Patent No. 2,501,731, 28 March 1950

  200. 200.

    Peri, J.B.: The state of dispersion of detergent additives in lubricating oil and other hydrocarbons. J. Am. Oil Chem. Soc. 35, 110–117 (1958)

    Article  Google Scholar 

  201. 201.

    Mansot, J.L., Hallouis, M., Martin, J.M.: Colloidal antiwear additives. 2. Tribological behaviour of colloidal additives in mild wear regime. Colloids Surf. A 75, 25–31 (1993)

    Article  Google Scholar 

  202. 202.

    Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: The film-forming and friction properties of overbased calcium sulphonate detergents. Tribol. Lett. 29, 33–44 (2008)

    Article  Google Scholar 

  203. 203.

    Bennington, J.E., Cole, D.E., Ghirla, P.J., Smith, R.K.: Stable colloid additives for engine oils—potential improvement in fuel economy. SAE Technical Paper 750677 (1975)

  204. 204.

    Reick, F.G.: Lubricant oil containing polytetrafluoroethylene and fluorochemical surfactant. US Patent No. 4,224,173, 23 Sept 1980

  205. 205.

    Reick, F.G.: Energy saving lubricants containing colloidal PTFE. Lubr. Eng. 38, 635–646 (1982)

    Google Scholar 

  206. 206.

    Chinas, F.C.: The behaviour of colloids in lubricated contacts. PhD Thesis, University of London (2000)

  207. 207.

    Bakunin, V.N., Suslov, AYu., Kuzmina, G.N., Parenago, O.P.: Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubr. Sci. 17, 127–145 (2005)

    Article  Google Scholar 

  208. 208.

    Martin, J.M., Ohmae, N.: Nanolubricants, vol. 13. Wiley, New York (2008)

    Google Scholar 

  209. 209.

    Zhou, J., Wu, Z., Zhang, Z., Liu, W., Xue, Q.: Tribological behaviour and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8, 213–218 (2000)

    Article  Google Scholar 

  210. 210.

    Qiu, S., Zhou, Z., Dong, J., Chen, G.: Preparation of Ni nanoparticles and evaluation of their tribological performance as potential antiwear additives in oils. Trans. ASME. J. Tribol. 123, 441–443 (2001)

    Article  Google Scholar 

  211. 211.

    Chinas-Castillo, F., Spikes, H.A.: The behavior of colloidal solid particles in elastohydrodynamic contacts. Tribol. Trans. 43, 387–394 (2000)

    Article  Google Scholar 

  212. 212.

    Chinas-Castillo, F., Spikes, H.A.: The lubricating properties of dilute colloidal solid dispersions. In: Proceedings of ITC Conference, Nagasaki, Oct. 2000, vol. 1, pp. 649–654. Publ. JST 2001, Tokyo

  213. 213.

    Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear 213, 29–32 (1997)

    Article  Google Scholar 

  214. 214.

    Hu, Z.S., Dong, J.X., Chen, G.X.: Study of antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31, 355–360 (1998)

    Article  Google Scholar 

  215. 215.

    Zhang, Z., Liu, W., Xue, Q.: Study of lubricating mechanism of La(OH)3 nanocluster modified by compound containing nitrogen in liquid paraffin. Wear 218, 139–144 (1998)

    Article  Google Scholar 

  216. 216.

    Battez, A., Hernández, R., González, J.L., Viesca, J.L., Fernández, J.E., Díaz Fernández, J.M., Machado, A., Chou, R., Riba, J.: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265, 422–428 (2008)

    Article  Google Scholar 

  217. 217.

    Gupta, B.K., Bhushan, B.: Fullerene particles as an additive to liquid lubricants and greases for low friction and wear. Lubr. Eng. 50, 524–528 (1994)

    Google Scholar 

  218. 218.

    Ginzburg, B.M., Kireenko, O.F., Shepelevskii, A.A., Shibaev, L.A., Tochilnikov, D.G., Leksovskii, A.M.: Thermal and tribological; properties of fullerene-containing composite systems. Part 2. Formation of tribo-polymer films during boundary sliding friction in the presence of fullerene C60. J. Macromol. Sci. B 44, 93–115 (2005)

    Article  Google Scholar 

  219. 219.

    Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008)

    Article  Google Scholar 

  220. 220.

    Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005)

    Article  Google Scholar 

  221. 221.

    Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additives in water. Tribol. Lett. 25, 247–253 (2006)

    Article  Google Scholar 

  222. 222.

    Zhang, W., Zhou, M., Zhu, H., Tian, Y., Wang, K., Wei, J., Ji, F., Li, X., Zhang, P., Wu, D.: Tribological properties of oleic acid-modified graphene as lubricant oil additives. J. Phys. D Appl. Phys. 44, 205303 (2011)

    Article  Google Scholar 

  223. 223.

    Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)

    Article  Google Scholar 

  224. 224.

    Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interface 3, 4221–4227 (2011)

    Article  Google Scholar 

  225. 225.

    Choudhary, S., Mungse, H.P., Khatri, O.P.: Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J. Mater. Chem. 22, 21032–21039 (2012)

    Article  Google Scholar 

  226. 226.

    Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. 160, 282–287 (2002)

    Article  Google Scholar 

  227. 227.

    Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotech. 1, 103–111 (2006)

    Article  Google Scholar 

  228. 228.

    Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultra-low friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  Google Scholar 

  229. 229.

    Tevet, O., Von-Huth, P., Popovitz-Biro, R., Rosentsveig, R., Wagner, H.D., Tenne, R.: Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad. Sci. 108, 19901–19906 (2011)

    Article  Google Scholar 

  230. 230.

    Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)

    Article  Google Scholar 

  231. 231.

    Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H.: Boron nitride as a lubricant additive. Wear 232, 199–206 (1999)

    Article  Google Scholar 

  232. 232.

    Reeves, C.J., Menezes, P.L., Lovell, M.R., Jen, T.-C.: The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol. Lett. 51, 437–452 (2013)

    Article  Google Scholar 

  233. 233.

    Lovell, M.R., Kabir, M.A., Menezes, P.L., Higgs, C.F.: Influence of boric acid additive size on green lubricant performance. Philos. Trans. R. Soc. Lond. A368, 4851–4868 (2010)

    Article  Google Scholar 

  234. 234.

    Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014)

    Article  Google Scholar 

  235. 235.

    Chinas Castillo, F., Spikes, H.A.: Mechanism of action of colloidal solid dispersions. Trans. ASME J. Tribol. 125, 552–557 (2003)

    Article  Google Scholar 

  236. 236.

    Chauveau, V., Mazuyer, D., Dassenoy, F., Cayer-Barrioz, J.: In situ film-forming and friction-reduction mechanisms for carbon-nanotube dispersions in lubrication. Tribol. Lett. 47, 467–480 (2012)

    Article  Google Scholar 

  237. 237.

    Perfiliev, V., Moshkovith, A., Verdyan, A., Tenne, R., Rapoport, L.: A new way to feed nanoparticles to friction interfaces. Tribol. Lett. 21, 89–93 (2006)

    Article  Google Scholar 

  238. 238.

    Olomolehin, Y., Kapadia, R.G., Spikes, H.A.: Antagonistic interaction of antiwear additives and carbon black. Tribol. Lett. 37, 49–58 (2009)

    Article  Google Scholar 

  239. 239.

    Yamamoto, K., Kotaka, A., Umehara, K.: Additives for improving the fuel economy of diesel engine systems. Tribol. Online 5, 195–198 (2010)

    Article  Google Scholar 

  240. 240.

    Ramachandran, S., Tsai, B.L., Blanco, M., Chen, H., Tang, Y., Goddard, W.A.: Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir 12, 6419–6428 (1996)

    Article  Google Scholar 

  241. 241.

    Lundgren, S.M., Eriksson, K., Rossenaar, B.: Boosting the friction performance of amine friction modifiers with MoDTC. SAE Int. J. Fuels Lubr. 8, 827–830 (2015)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hugh Spikes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spikes, H. Friction Modifier Additives. Tribol Lett 60, 5 (2015).

Download citation


  • Friction
  • Lubricant additives
  • OFM
  • Molybdenum additives
  • Functionalised polymers
  • Nanoparticles
  • Boundary lubrication