Skip to main content
Log in

The Numerical Model of Electrothermal Deformations of Carbides in Bearing Steel as the Possible Cause of White Etching Cracks Initiation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Despite the ongoing debates on influence of hydrogen uptake and penetration in the steel, pulsed and extraordinary fatigue on white etching cracks (WEC) formation in bearing steel SAE52100, the present paper proposes an alternative hypothesis on electrothermal initiation of the WEC. The hypothesis points to differences between electrical and thermal properties of elements of steel microstructure that lead sequentially to redistribution of current, resistivity heating, thermal expansion and deformations of the carbide particle. Appearance of a nano-void is also predicted by the model in the cases of the martensite and the bainite structures. The model also predicts higher probability of the WEC formation for the bainitic steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Evans, M.H.: White structure flaking in wind turbine gearbox bearings: effect of butterflies and white etching cracks (WEC). Mater. Sci. Technol. 28, 3–18 (2012)

    Google Scholar 

  2. Greco, A., Sheng, S., Keller, J., Erdemir, A.: Material wear and fatigue in wind turbine systems. Wear 302, 1583–1591 (2013)

    Article  Google Scholar 

  3. Rensselar, J.V.: The elephant in the wind turbine, tribology & lubrication technology, June 2010, 38–50 (2010)

  4. Kotzalas, M.N., Doll, G.L.: Tribological advancements for reliable wind turbine performance. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 368, 4829–4850 (2010)

    Article  Google Scholar 

  5. Holweger, W., Wolf, M., Merk, D., Blass, T., Goss, M., Loos, J., Barteldes, S., Jakovics, A.: White etching crack root cause investigations. Tribol. Trans. 58, 59–69 (2015)

    Article  Google Scholar 

  6. ISO 281:2007(E): Rolling bearings—dynamic load ratings and rating life, Second edition (2007)

  7. Ruellan, A., Ville, F., Kleber, X., Arnaudon, A., Girodin, D.: Understanding white etching cracks in rolling element bearings: the effect of hydrogen charging on the formation mechanisms. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 228, 1252–1265 (2014)

    Article  Google Scholar 

  8. Luyckx, J.: White etching crack failure mode in roller bearings: from observation via analysis to understanding and an industrial solution. In: Yoshimi, T., William, M. (eds.) Rolling element bearings, pp. 1–25. ASTM International, Anaheim (2012)

    Chapter  Google Scholar 

  9. Ruellan, A., Ville, F., Kleber, X., Burnet, C., Liatard, B.: White etching cracks (WEC) in rolling element bearings: influent drivers from wind turbines to laboratory reproduction. Tribol. Lubr. Technol. 70, 14–17 (2014)

    Google Scholar 

  10. Tamada, K., Tanaka, H.: Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear 199, 245–252 (1996)

    Article  Google Scholar 

  11. Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K.: Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear 306, 226–241 (2013)

    Article  Google Scholar 

  12. Gegner, J.: Frictional surface crack initiation and corrosion fatigue driven crack growth. NREL Workshop, Broomfield (2011)

  13. Holweger, W.: Progress in solving white etching crack phenoma. Gearbox reliability collaborative all member meeting, National Renewable Energy Laboratory, Golden, Colorado, USA (2014)

  14. Holweger, W., Wolf, M., Walther, F., Trojahn, W., Mütze, A., Kunzmann, J., Schreiber, J., Mayer, J., Reichelt, M.: Studies of the contribution of alternating electromagnetic fields toward material fatigue in 100Cr6. Ind. Lubr. Tribol. 64, 247–252 (2012)

    Article  Google Scholar 

  15. Pohrer, B., Zürcher, M., Holweger, W., Korth, Y., Wolf, M., Goss, M., Schluecker, E.: In situ IR-Spektroskopie an elektrisch beanspruchten Walzlagern fur White Etching Crack-Untersuchungen, GFT Fachtagung, Göttingen. Vortrag, Tagungsband (2013)

    Google Scholar 

  16. Ščepanskis, M., Jakovičs, A., Kaldre, I., Maniks, J., Nacke, B., and Holweger, W.: Electromagnetic impact on early white etching cracks in inhomogeneous structure of bearing steel. STLE Annual Meeting, Lake Buena Vista, Florida, USA 1, 343–345 (2014)

  17. Bhadeshia, H.K.D.H.: Steels for bearings. Prog. Mater. Sci. 57, 268–435 (2012)

    Article  Google Scholar 

  18. Johnson, R.F., Sewell, J.F.: The bearing properties of 1% C-Cr steel as influenced by steelmaking practice. J. Iron Steel Inst. 196, 414–444 (1960)

    Google Scholar 

  19. West, O.H.E., Diederichs, A.M., Alimadadi, H., Dahl, K.V., Somers, M.A.J.: Application of complementary techniques for advanced characterization of white etching cracks. Pract. Metallogr. 50, 410–431 (2013)

    Article  Google Scholar 

  20. Grabulov, A.: TEM/SEM investigation of microstructural changes within the white etching areas under rolling contact fatigue and 3-D crack reconstruction by focused ion beam. Scr. Mater. 57, 635–638 (2007)

    Article  Google Scholar 

  21. Mitamura, N., Hidaka, H., Takaki, S.: Microstructure development in bearing steel during rolling contact fatigue. Mater. Sci. Forum 539–543, 4255–4260 (2007)

    Article  Google Scholar 

  22. Nakayama, K., Nevshupa, R.A.: Plasma generation in a gap around a sliding contact. J. Phys. D 35, L53–L56 (2002)

    Article  Google Scholar 

  23. Chu, P.S.Y., Cameron, A.: Flow of electric current through lubricated contact. ASLE Trans. 10, 226–234 (1967)

    Article  Google Scholar 

  24. Prashad, H.: Magnetic flux density distribution on the track surface of rolling-element bearings: an experimental and theoretical investigation. Tribol. Trans. 39, 386–391 (1996)

    Article  Google Scholar 

  25. Prashad, H.: Determination of magnetic flux density on the surfaces of rolling-element bearings as an indication of the current that has passed through them: an investigation. Tribol. Int. 32, 455–467 (1999)

    Article  Google Scholar 

  26. Boyd, J., Kaufman, H.N.: The causes and the control of electrical currents in bearings. Lubr. Eng. 15, 28–35 (1959)

    Google Scholar 

  27. Jablonka, K.: The effect of the polarity of the lubricant upon capacitance measurements of EHD contacts. Tribol. Int. 61, 95–101 (2013)

    Article  Google Scholar 

  28. Huber, P., Sonin, A.: Theory of charging in liquid hydrocarbon fluids. J. Colloid Interface Sci. 61, 109–125 (1977)

    Article  Google Scholar 

  29. Qiu, T.Q., Tien, C.L.: Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transfer 115, 835–841 (1993)

    Article  Google Scholar 

  30. Kajimura, H., Yamanaka, K.: Effect of chromium carbides on electrical resistivity of nickel based alloys by low temperature aging. Mater. Sci. Technol. 5, 1128–1134 (1989)

    Article  Google Scholar 

  31. Häglund, J., Grimvall, G., Jarlborg, T.: Electronic structure, X-ray photoemission spectra, and transport properties of Fe3C (cementite). Phys. Rev. B 44, 2914 (1991)

    Article  Google Scholar 

  32. Radcliffe, S.V., Rollason, E.C.: Electrical resistivity of high purity Fe-C alloys. J. Iron Steel Inst. 189, 45 (1958)

    Google Scholar 

  33. Masumoto, H.: On the electrical and thermal conductivities of carbon steel and cast iron. Science Reports of the Tohoku Imperial University 16, 417–435 (1927)

  34. Helsing, J., Grimvall, G.: Thermal conductivity of cast iron: models and analysis of experiments. J. Appl. Phys. 70, 1198 (1991)

    Article  Google Scholar 

  35. Lee, M.-C., Simkovich, G.: Electrical conduction behaviour of cementite, Fe3C. Metall. Trans. A 18A, 485 (1987)

    Article  Google Scholar 

  36. Umemoto, M., Liu, Z.G., Takaoka, H., Sawakami, M., Tsuchiya, K., Masuyama, K.: Production of bulk cementite and its characterization. Metall. Mater. Trans. A 32A, 2127–2131 (2001)

    Article  Google Scholar 

  37. Umemoto, M., Todaka, Y., Takahashi, T., Li, P., Tokumiya, R., Tsuchiya, K.: Characterization of bulk cementite produced by mechanical alloying and spark plasma sintering. JMNM 15–16, 607–614 (2003)

    Article  Google Scholar 

  38. Ryttberg, K., Knutsen Wedel, M., Recina, V., Dahlman, P., Nyborg, L.: The effect of cold ring rolling on the evolution of microstructure and texture in 100Cr6 steel. Mater. Sci. Eng. A 527, 2431–2436 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The contribution of Dr. M. Ščepanskis is financially supported by European Social Fund within the Project No. 2013/0018/1DP/1.1.1.2.0/13/APIA/VIAA/061. The contribution of the other co-authors was supported by Schaeffler Technologies GmbH & Co. KG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihails Ščepanskis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ščepanskis, M., Jakovičs, A., Kaldre, I. et al. The Numerical Model of Electrothermal Deformations of Carbides in Bearing Steel as the Possible Cause of White Etching Cracks Initiation. Tribol Lett 59, 37 (2015). https://doi.org/10.1007/s11249-015-0564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0564-8

Keywords

Navigation