Skip to main content
Log in

Tribological Performance and Lubrication Mechanism of Contact-Charged Electrostatic Spray Lubrication Technique

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To minimize friction at the chip–tool interface and the amount of lubricant usage, a new near-dry machining technique called “contact-charged electrostatic spray lubrication (CCESL) technique” was proposed. The chargeability, penetrability, and wettability of lubricant droplets under CCESL condition were analyzed. The atomization and tribological performance of the CCESL technique were compared with those of the existing minimal quantity lubrication (MQL) technique under different testing conditions. The experimental results suggest that the CCESL technique considerably improves the anti-wear and anti-friction properties compared with the existing MQL technique. In addition, to understand its lubrication mechanism, the morphology and main elements of the worn surface were characterized using an optical microscope and X-ray photoelectron spectroscopy, respectively. In the CCESL technique, an ordered molecule layer which provides effective lubrication is formed on the rubbing surface as polar functional groups in the lubricant molecule are oriented. The enhanced tribological performance is attributed to the fact that the technique can provide more abundant lubricant and oxygen for the interface of frictional pairs to promote the formation of an abundant lubricating layer comprising adsorption and oxide films, which improve the worn surface quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rahim, E.A., Sasahara, H.: A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribol. Int. 44(3), 309–317 (2011)

    Article  Google Scholar 

  2. Kishawy, H.A., Dumitrescu, M., Ng, E.G., Elbestawi, M.A.: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int. J. Mach. Tools Manuf. 45(2), 219–227 (2005)

    Article  Google Scholar 

  3. Rahman, M., Kumar, A.S., Salam, M.U.: Experimental evaluation on the effect of minimal quantities of lubricant in milling. Int. J. Mach. Tools Manuf. 42(5), 539–547 (2002)

    Article  Google Scholar 

  4. Machado, A.R., Wallbank, J.: The effect of extremely low lubricant volumes in machining. Wear 210(1–2), 76–82 (1997)

    Article  Google Scholar 

  5. Hanyu, H., Kamiya, S., Murakami, Y., Saka, M.: Dry and semi-dry machining using finely crystallized diamond coating cutting tools. Surf. Coat. Technol. 173–174, 992–995 (2003)

    Article  Google Scholar 

  6. Obikawa, T., Kamata, Y., Shinozuka, J.: High-speed grooving with applying MQL. Int. J. Mach. Tools Manuf. 46(14), 1854–1861 (2006)

    Article  Google Scholar 

  7. Da Silva, R.B., Vieira, J.M., Cardoso, R.N., Carvalho, H.C., Costa, E.S., Machado, A.R., et al.: Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear 271(9–10), 2459–2465 (2011)

    Article  Google Scholar 

  8. Ghanshyam, C., Bagchi, S., Kapur, P.: Optimization of spray parameters in the fabrication of SnO2 layers using electrostatic assisted deposition technique. J. Electrost. 71(1), 68–76 (2013)

    Article  Google Scholar 

  9. Law, S.E.: Agricultural electrostatic spray application: a review of significant research and development during the 20th century. J. Electrost. 51–52, 25–42 (2001)

    Google Scholar 

  10. Devanand, M., Divaker, D.: Effects of electrode voltage, liquid flow rate, and liquid properties on spray chargeability of an air-assisted electrostatic-induction spray-charging system. J. Electrost. 68(2), 152–158 (2010)

    Article  Google Scholar 

  11. Reddy, N.S.K., Nouari, M., Yang, M.Y.: Development of electrostatic solid lubricant system for improvement in machining process performance. Int. J. Mach. Tools Manuf. 50(9), 789–797 (2010)

    Article  Google Scholar 

  12. Reddy, N.S.K., Yang, M.: Development of an electro static lubrication system for drilling of SCM 440 steel. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 224(B2), 217–224 (2010)

    Article  Google Scholar 

  13. Liu, X., Xu, W.J., Sun, J.: Experimental research on the dry electrostatic cooling assisted machining for hardened steel. Adv. Mater. Res. 189–193, 3026–3030 (2011)

    Article  Google Scholar 

  14. Yakuku, S.O.: Ecological pure ionized gaseous medium in the technology of machining. Int. J. Phys. Sci. 4(3), 133–138 (2009)

    Google Scholar 

  15. Wang, H., Han, R.D., Wang, Y.: Tool wear investigation on dry electrostatic cooling in turning titanium alloy Ti6Al4V. Adv. Mater. Res. 97–101, 2058–2061 (2010)

    Article  Google Scholar 

  16. Tung, S.C., Wang, S.S.: In-situ electro-charging for friction reduction and wear resistant film formation. Tribol. Trans. 34(4), 479–488 (1991)

    Article  Google Scholar 

  17. Jiang, H.J., Meng, Y.G., Wen, S.Z., Ji, H.: Effects of external electric fields on frictional behaviors of three kinds of ceramic/metal rubbing couples. Tribol. Int. 32(3), 161–166 (1999)

    Article  Google Scholar 

  18. Lavielle, L.: Electric field effect on the friction of a polyethylene-terpolymer film on a steel substrate. Wear 176(1), 89–93 (1994)

    Article  Google Scholar 

  19. Kimura, Y., Nakano, K., Kato, T., Morishita, S.: Control of friction coefficient by applying electric fields across liquid crystal boundary films. Wear 175(1–2), 143–149 (1994)

    Article  Google Scholar 

  20. Alves, S.M., Barros, B.S., Trajano, M.F., Ribeiro, K.S.B., Moura, E.: Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol. Int. 65, 28–36 (2013)

    Article  Google Scholar 

  21. Jahannama, M.R., Watkins, A.P., Yule, A.J.: Examination of electrostatically charged sprays for agricultural spraying applications. In: ILASS-Europe 99 Toulouse, vol. 5–7, pp. 120-127 (1999)

  22. Park, K.H., Olortegui-Yume, J., Yoon, M.C., Kwon, P.: A study on droplets and their distribution for minimum quantity lubrication (MQL). Int. J. Mach. Tools Manuf. 50(9), 824–833 (2010)

    Article  Google Scholar 

  23. Gao, S.Q., Liu, H.P.: Capillary Mechanics. Science Press, Beijing (2010)

    Google Scholar 

  24. Zhu, B.Y., Zhao, G.X.: The determination of the surface tension of a liquid: drop volume method. Chemistry 6, 21–26 (1981)

    Google Scholar 

  25. Harkins, W.D.: The Physical Chemistry of Surface Film. Reinhold Publishing Corporation, New York (1962)

    Google Scholar 

  26. Purcell, E.M.: Electricity and Magnetism. McGraw-Hill, New York (1965)

    Google Scholar 

  27. Elajnaf, A., Carter, P., Rowley, G.: The effect of relative humidity on electrostatic charge decay of drugs and excipient used in dry powder inhaler formulation. Drug Dev. Ind. Pharm. 33(9), 967–974 (2007)

    Article  Google Scholar 

  28. Rohman, A., Man, Y.B.C.: Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 43(3), 886–892 (2010)

    Article  Google Scholar 

  29. Kuligowski, J., Quintás, G., Garrigues, S., de la Guardia, M.: Determination of lecithin and soybean oil in dietary supplements using partial least squares–Fourier transform infrared spectroscopy. Talanta 77(1), 229–234 (2008)

    Article  Google Scholar 

  30. Li, Z.P., Li, X.F., Zhang, Y.W., Ren, T.H., Zhao, Y.D., Zeng, X.Q., et al.: Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil. Appl. Surf. Sci. 308, 91–99 (2014)

    Article  Google Scholar 

  31. Zhu, R.S., Zhang, J.B., Wang, Z.S.: Experimental investigation on the active control of sliding friction. Tribology 19(4), 311–315 (1999)

    Google Scholar 

  32. Zlsman, W.A.: The physical chemistry of surface films. Science 116, 548–549 (1952)

    Article  Google Scholar 

  33. Huang, P., Meng, Y.G., Xu, H.: Tribology Course. Higher Education Press, Beijing (2007)

    Google Scholar 

  34. Childs, T.H.C., Maekawa, K., Obikawa, T., Yamane, Y.: Metal Machining—Theory and Applications. Arnold, London (2000)

    Google Scholar 

  35. Filippa, L., Trento, A., Álvarez, A.M.: Sauter mean diameter determination for the fine fraction of suspended sediments using a LISST-25X diffractometer. Measurement 45(3), 363–368 (2012)

    Article  Google Scholar 

  36. Bhushan, B.: Principles and Applications of Tribology. Wiley, New York (1999)

    Google Scholar 

  37. Mang, T., Dresel, W.: Lubricants and Lubrications. Wiley, Weinheim (2001)

    Google Scholar 

  38. Liao, Y.S., Lin, H.M.: Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. Int. J. Mach. Tools Manuf. 47(11), 1660–1666 (2007)

    Article  Google Scholar 

  39. Morishita, S., Nakano, K., Kimura, Y.: Electroviscous effect of nematic liquid crystals. Tribol. Int. 26(6), 399–403 (1993)

    Article  Google Scholar 

  40. Luo, J.B., Shen, M.W., Wen, S.Z.: Tribological properties of nanoliquid film under an external electric field. J. Appl. Phys. 96(11), 6733–6738 (2008)

    Article  Google Scholar 

  41. Mahmound, M.M., Mohamed, M.K., Ali, W.Y.: Tribological behaviour of lubricated surfaces under application of electric current. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 224(1), 73–79 (2010)

    Article  Google Scholar 

  42. Xie, G.X., Li, G., Luo, J.B., Liu, S.H.: Effects of electric field on characteristics of nano-confined lubricant films with ZDDP additive. Tribol. Int. 43(5–6), 975–980 (2010)

    Article  Google Scholar 

  43. Schey, J.A.: Tribology in metalworking: friction, lubrication and wear. American Society for Metals, Ohio (1983)

    Google Scholar 

  44. Chen, R.J., Zhai, W.J., Qi, Y.L.: The mechanism and technology of friction control by applying electric voltage II: the effects of applied voltage on friction. Tribology 16(3), 235–238 (1996)

    Google Scholar 

  45. Thepsonthi, T., Hamdi, M., Mitsui, K.: Investigation into minimal-cutting-fluid application in high-speed milling of hardened steel using carbide mills. Int. J. Mach. Tools Manuf. 49(2), 156–162 (2009)

    Article  Google Scholar 

  46. Bartenev, G.M., Lavrentev, V.V.: Friction and Wear of Polymers. Elsevier Scientific Publishing Company, Amsterdam (1981)

    Google Scholar 

  47. Zhang, R.J., Li, S.H., Jin, Y.S.: FT-IR and Raman spectroscopic evaluation of products derived from pyrolyzed lubricant during friction and wear. J. Tsinghua Univ. (Sci. Technol.) 43(5), 648–650 (2003)

    Google Scholar 

  48. John, F.M., Jill, C.: Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Waltham (1992)

    Google Scholar 

  49. Muhler, M., Schlögl, R., Ertl, G.: The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992)

    Article  Google Scholar 

  50. Roosendaal, S.J., Asselen, B.V., Elsenaar, J.W., Vredenberg, A.M., Habraken, F.H.P.M.: The oxidation state of Fe(100) after initial oxidation in O2. Surf. Sci. 442(3), 329–337 (1999)

    Article  Google Scholar 

  51. Mills, P., Sullivan, J.L.: Study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 16(5), 723–732 (1983)

    Article  Google Scholar 

  52. Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)

    Article  Google Scholar 

  53. Srivastava, S., Badrinarayanan, S., Mukhedkar, A.J.: X-ray photoelectron spectra of metal complexes of substituted 2, 4-pentanedionses. Polyhedron 4(3), 409–414 (1985)

    Article  Google Scholar 

  54. Han, N., Shui, L., Lui, W.M., Xue, Q.J., Sun, Y.S.: Study of the lubrication mechanism of olefin sulfide. Tribology 22(1), 49–53 (2002)

    Google Scholar 

  55. Kajdas, C.K.: Importance of the triboemission process for tribochemical reaction. Tribol. Int. 38(3), 337–353 (2005)

    Article  Google Scholar 

  56. Guan, J.J., Xu, X.F., Li, G., Peng, W.: Preparation and tribological properties of inclusion complex of β-cyclodextrin/dialkyl pentasulfide as additive in PEG-600. Appl. Surf. Sci. 289, 400–406 (2014)

    Article  Google Scholar 

  57. Savenko, V.I., Shchukin, E.D.: New applications of the Rehbinder effect in tribology: a review. Wear 194(1–2), 86–94 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant No. 51375454), and authors are grateful to Dr. Huan Zhou for guidance of XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Yao, W., Hu, J. et al. Tribological Performance and Lubrication Mechanism of Contact-Charged Electrostatic Spray Lubrication Technique. Tribol Lett 59, 28 (2015). https://doi.org/10.1007/s11249-015-0559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0559-5

Keywords

Navigation