Skip to main content
Log in

A Contact Mechanics Formulation for Predicting Dishing and Erosion CMP Defects in Integrated Circuits

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A three-dimensional contact mechanics formulation is presented for chemical mechanical polishing applications. The formulation is coupled with the Preston material removal equation in order to simulate the evolution of pressure and wafer height. The physics-based formulation allows the pressure and height to evolve such that dishing and erosion appear seamlessly. Results are compared against another feature-scale model and experiment. The methodology and model offer physics-based results that further the understanding of chemical mechanical polishing for a given layout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Liu, Y., Nassif, S.R., Pileggi, L.T., Strojwas, A.J.: Impact of interconnect variations on the clock skew of a gigahertz microprocessor. Paper presented at the Proceedings of the 37th Annual Design Automation Conference, Los Angeles, California, USA (2000)

  2. Comes, R., Terrell, E., Higgs, C.: Pad deflection-based model of chemical-mechanical polishing for use in CAD IC layout. IEEE Trans. Semicond. Manuf. 23(1), 121–131 (2010)

    Article  Google Scholar 

  3. Park, T., Tugbawa, T., Boning, D.S., Hymes, S., Brown, T., Smekalin, K., Schwartz, G.: Multi-level pattern effects in copper CMP. In: Proceedings of the CMP Symposium of the Electrochemical Society Meeting, pp. 94–100 (1999)

  4. Shan, L., Levert, J., Meade, L., Tichy, J., Danyluk, S.: Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing. J. Tribol. 122, 539 (2000)

    Article  Google Scholar 

  5. He, L., Kahng, A.B., Tam, K.H., Xiong, J.: Design of integrated-circuit interconnects with accurate modeling of chemical-mechanical planarization. In: Proceedings SPIE 5756, Design and Process Integration for Microelectronic Manufacturing III, p. 109 (2005)

  6. Mekkoth, J., Krishna, M., Qian, J., Hsu, W., Chen, C., Chen, Y., Tamarapalli, N., Cheng, W., Tofte, J., Keim, M.: Yield learning with layout-aware advanced scan diagnosis. In: International Symposium for Testing and Failure Analysis, vol. 32, p. 412. ASM International (1998)

  7. Mehrotra, V., Sam, S.L., Boning, D., Chandrakasan, A., Vallishayee, R., Nassif, S.: A methodology for modeling the effects of systematic within-die interconnect and device variation on circuit performance. Paper presented at the Proceedings of the 37th Annual Design Automation Conference, Los Angeles, California, USA (2000)

  8. Terrell, E., Higgs III, C.: A particle-augmented mixed lubrication modeling approach to predicting chemical mechanical polishing. J. Tribol. 131, 012201 (2009)

    Article  Google Scholar 

  9. Boning, D.S., Nassif, S.: Models of process variations in device and interconnect. In: Chandrakasan, A., Bowhill, W., Fox, F. (eds.) Design of High Performance Microprocessor Circuits, Chap. 6. IEEE Press, New York (2000)

  10. Stine, B., Ouma, D., Divecha, R., Boning, D., Chung, J.: A closed-form analytic model for ILD thickness variation in CMP processes. A A 1, 2.0 (1997)

    Google Scholar 

  11. Stine, B.E., Boning, D.S., Chung, J.E., Camilletti, L., Kruppa, F., Equi, E.R., Loh, W., Prasad, S., Muthukrishnan, M., Towery, D.: The physical and electrical effects of metal-fill patterning practices for oxide chemical-mechanical polishing processes. IEEE Trans. Electron Devices 45(3), 665–679 (1998)

    Article  Google Scholar 

  12. Stine, B.E., Ouma, D.O., Divecha, R.R., Boning, D.S., Chung, J.E., Hetherington, D.L., Harwoo, C., Nakagawa, O.S., Oh, S.Y.: Rapid characterization and modeling of pattern-dependent variation in chemical-mechanical polishing. IEEE Trans. Semicond. Manuf. 11(1), 129–140 (1998)

    Article  Google Scholar 

  13. Tang, B.D., Xie, X., Boning, D.S.: Damascene chemical-mechanical polishing characterization and modeling for polysilicon microelectromechanical systems structures. J. Electrochem. Soc. 152, G582 (2005)

    Article  Google Scholar 

  14. Boning, D.: Pattern dependent characterization of copper interconnect. In: Tutorial, international conference on microelectronic test structures (ICMTS) (2003)

  15. Chekina, O., Keer, L., Liang, H.: Wear-contact problems and modeling of chemical mechanical polishing. J. Electrochem. Soc. 145, 2100 (1998)

    Article  Google Scholar 

  16. Vlassak, J.: A model for chemical-mechanical polishing of a material surface based on contact mechanics. J. Mech. Phys. Solids 52(4), 847–873 (2004)

    Article  Google Scholar 

  17. Yoshida, T.: Three-dimensional wafer process model for nanotopography. In: MRS Online Proceedings Library, vol. 767 (2003)

  18. Yoshida, T.: Three-dimensional chemical mechanical polishing process model by BEM. In: Electrochemical Society Proceedings, vol. 99–37, pp. 593–604 (1999)

  19. Rzehak, R., Vasilev, B.: Greenwood–Williamson model for pattern-dependent planarization. In: 2007 international conference on planarization/CMP technology (ICPT), pp. 1–6. VDE (2007)

  20. Vasilev, B., Rzehak, R., Bott, S., Kücher, P., Bartha, J.W.: Greenwood–Williamson model combining pattern-density and pattern-size effects in CMP. IEEE Trans. Semicond. Manuf. 24(2), 338–347 (2011)

    Article  Google Scholar 

  21. Kaufman, A.: Volume visualization. Vis Comput 6(1), 1 (1990)

    Article  Google Scholar 

  22. Dickrell, D.J., Dugger, M.T., Hamilton, M.A., Sawyer, W.G.: Direct contact-area computation for MEMS using real topographic surface data. J. Microelectromech. Syst. 16(5), 1263–1268 (2007)

    Article  Google Scholar 

  23. Põdra, P., Andersson, S.: Wear simulation with the Winkler surface model. Wear 207(1–2), 79–85 (1997). doi:10.1016/S0043-1648(96)07468-6

    Article  Google Scholar 

  24. Sawyer, W.: Surface shape and contact pressure evolution in two component surfaces: application to copper chemical mechanical polishing. Tribol. Lett. 17(2), 139–145 (2004)

    Article  Google Scholar 

  25. Noh, K., Saka, N., Chun, J.-H.: A multi-scale model for copper dishing in chemical-mechanical polishing. In: Molecular Engineering of Biological and Chemical Systems (MEBCS), vol. 1 (2005)

  26. Higgs, C.F., Ng, S.H., Borucki, L., Yoon, I., Danyluk, S.: A mixed-lubrication approach to predicting CMP fluid pressure modeling and experiments. J. Electrochem. Soc. (2005). doi:10.1149/1.1855834

    Google Scholar 

  27. Shan, L., Levert, J., Meade, L., Tichy, J., Danyluk, S.: Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing. J. Tribol. 122(3), 539–543 (2000)

    Article  Google Scholar 

  28. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  29. Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 228(ArticleType: research-article/Full publication date: 1929/Copyright © 1929 The Royal Society), 377–420 (1929)

    Article  Google Scholar 

  30. Xie, X.: Physical understanding and modeling of chemical mechanical planarization in dielectric materials. PhD Dissertation, Massachusetts Institute of Technology, Cambridge (2007)

  31. Chekina, O., Keer, L., Liang, H.: Wear-contact problems and modeling of chemical mechanical polishing. J. Electrochem. Soc. 145(6), 2100–2106 (1998)

    Article  Google Scholar 

  32. Cai, H.: Modeling of pattern dependencies in the fabrication of multilevel copper metallization. PhD Dissertation, Massachusetts Institute of Technology, Cambridge (2007)

  33. Cai, H., Park, T., Boning, D., Kim, H., Kang, Y., Kim, S., Lee, J.-G: Coherent chip-scale modeling for copper CMP pattern dependence. In: MRS Proceedings, vol. 816 (2004)

  34. Gbondo-Tugbawa, T.E.: Chip-scale modeling of pattern dependencies in copper chemical mechanical polishing processes. PHD Dissertation, Massachusetts Institute of Technology, Cambridge (2002)

  35. Tugbawa, T., Park, T., Boning, D., Pan, T., Li, P., Hymes, S., Brown, T., Camilletti, L.: A mathematical model of pattern dependencies in Cu CMP processes. In: Electrochemical Society Meeting. Honolulu, HA, USA (1999)

  36. Tugbawa, T., Park, T., Lee, B., Boning, D.: Modeling of pattern dependencies for multi-level copper chemical-mechanical polishing processes. In: MRS Online Proceedings Library, vol. 671 (2001)

  37. Tugbawa, T., Park, T., Lee, B., Boning, D., Lefevre, P., Nguyen, J.: Modeling of pattern dependencies in abrasive-free copper chemical mechanical polishing processes. In: Proceedings of VLSI Multilevel Interconnect Conference, pp. 113–122 (2001)

  38. Ng, S.H., Hight, R., Zhou, C., Yoon, I., Danyluk, S.: Pad soaking effect on interfacial fluid pressure measurements during cmp. J. Tribol. 125, 582 (2003)

    Article  Google Scholar 

  39. Stein, D.J., Hetherington, D.L.: Review and experimental analysis of oxide CMP models. In: Electrochemical Society Proceedings, vol. 9937, pp. 217–233 (1999)

Download references

Acknowledgments

The authors would like to acknowledge the NSF Division of Computing and Communication Foundations (CCF) within the CISE Directorate for supporting this Award 0811770 and the CSSI DFM working group led by Professor Shawn Blanton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Higgs III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra Suarez, J.A., Higgs, C.F. A Contact Mechanics Formulation for Predicting Dishing and Erosion CMP Defects in Integrated Circuits. Tribol Lett 59, 36 (2015). https://doi.org/10.1007/s11249-015-0550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0550-1

Keywords

Navigation