Tribology Letters

, 59:12

Investigation of Nanoscale Heat Transfer and Flying Characteristics in Thermal Flying Height Control Sliders Considering Near-Field Radiation

Original Paper


Nanoscale heat transfer at the head/disk interface is investigated for thermal flying height control sliders in hard disk drives. Near-field radiation effects due to evanescent photo tunneling are considered in addition to thermal conduction. It is found that the maximum value of the heat flux due to near-field thermal radiation is comparable to that from heat conduction. Near-field thermal radiation is shown to cause a decrease in the thermal protrusion, resulting in a larger flying height than predicted for the case that near-field radiation is neglected. Results from this study are useful for the design of high-performance disk drives.


Near-field Thermal radiation Thermal flying height control Head/disk interface 


  1. 1.
    Kyder, M.H., Gustafson, R.W.: High-density perpendicular recording—advances, issues, and extensibility. J. Magn. Magn. Mater. 287, 449–458 (2005)CrossRefGoogle Scholar
  2. 2.
    Yeack-Scranton, C.E., Khanna, V.D., Etzold, K.F., Praino, A.P.: An active slider for practical contact recording. IEEE Trans. Magn. 26, 2478–2483 (1990)CrossRefGoogle Scholar
  3. 3.
    Zheng, J., Bogy, D.B., Zhang, S., Yan, W.: Effects of altitude on thermal flying-height control actuation. Tribol. Lett. 40, 295–299 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, D., Bogy, D.: Simulation of static flying attitudes with different heat transfer models for a flying-height control slider with thermal protrusion. Tribol. Lett. 40, 31–39 (2010)CrossRefGoogle Scholar
  5. 5.
    Dahl, J.B., Bogy, D.B.: Static and dynamic slider air-bearing behavior in heat-assisted magnetic recording under thermal flying height control and laser system-induced protrusion. Tribol. Lett. 54, 35–50 (2014)CrossRefGoogle Scholar
  6. 6.
    Zheng, J., Bogy, D.B.: Investigation of flying-height stability of thermal fly-height control sliders in lubricant or solid contact with roughness. Tribol. Lett. 38, 283–289 (2010)CrossRefGoogle Scholar
  7. 7.
    Zheng, H., Li, H., Talke, F.E.: Numerical simulation of a thermal flying height control slider with dual heater and insulator elements. IEEE Trans. Magn. 45, 3628–3631 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhang, S., Bogy, D.B.: A heat transfer model for thermal fluctuation in a thin slider/disk air bearing. Int. J. Heat Mass Transf. 42, 1791–1800 (1999)CrossRefGoogle Scholar
  9. 9.
    Chen, L., Bogy, D.B., Strom, B.: Thermal dependence of MR signal on slider flying state. IEEE Trans. Magn. 36, 2486–2489 (2000)CrossRefGoogle Scholar
  10. 10.
    Ju, Y.: Thermal conduction and viscous heating in microscale Couette flows. ASME J. Heat Transf. 122, 817–818 (2000)CrossRefGoogle Scholar
  11. 11.
    Shen, S., Chen, G.: A kinetic theory analysis on the heat transfer in hard drive air bearing. J. Appl. Phys. 103, 054304 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhou, W., Liu, B., Yu, S., Hua, W., Wong, C.: A generalized heat transfer model for thin film bearings at head-disk interface. Appl. Phys. Lett. 92, 043109 (2008)CrossRefGoogle Scholar
  13. 13.
    Volokitin, A.I., Persson, B.N.J.: Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007)CrossRefGoogle Scholar
  14. 14.
    Basu, S., Zhang, Z., Fu, C.: Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009)CrossRefGoogle Scholar
  15. 15.
    Shen, S., Narayanaswamy, A., Chen, G.: Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009)CrossRefGoogle Scholar
  16. 16.
    Polder, D., Van Hove, M.: Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303 (1971)CrossRefGoogle Scholar
  17. 17.
    Rytov, S.M.: Theory of Electric Fluctuations and Thermal Radiation. Air Force Cambridge Research Center, Bedford, MA (1959)Google Scholar
  18. 18.
    Pendry, J.B.: Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621–6633 (1999)CrossRefGoogle Scholar
  19. 19.
    Volokitin, A.I., Persson, B.N.J.: Resonant photon tunneling enhancement of the radiative heat transfer. Phys. Rev. B 69, 045417 (2004)CrossRefGoogle Scholar
  20. 20.
    Fu, C.J., Zhang, Z.M.: Nanoscale radiation heat transfer for silicon at different doping levels. Int. J. Heat Mass Transf. 49, 1703–1718 (2006)CrossRefGoogle Scholar
  21. 21.
    Basu, S., Lee, B.J., Zhang, Z.M.: Near-field radiation calculated with an improved dielectric function model for doped silicon. J. Heat Transf. 132, 023302 (2010)CrossRefGoogle Scholar
  22. 22.
    Mirmoosa, M.S., Rüting, F., Nefedov, I.S., Simovski, C.R.: Effective-medium model of wire metamaterials in the problems of radiative heat transfer. J. Appl. Phys. 115, 234905 (2014)CrossRefGoogle Scholar
  23. 23.
    Basu, S., Francoeur, M.: Penetration depth in near-field radiative heat transfer between metamaterials. Appl. Phys. Lett. 99, 143107 (2011)CrossRefGoogle Scholar
  24. 24.
    Rodriguez, A.W., Reid, M.T.H., Johnson, S.G.: Fluctuating-surface-current formulation of radiative heat transfer: theory and applications. Phys. Rev. B 88, 054305 (2013)CrossRefGoogle Scholar
  25. 25.
    Phan, A.D., Phan, T.L., Woods, L.M.: Near-field heat transfer between gold nanoparticle arrays. J. Appl. Phys. 114, 214306 (2013)CrossRefGoogle Scholar
  26. 26.
    Budaev, B.V., Bogy, D.B.: Computation of radiative heat transport across a nanoscale vacuum gap. Appl. Phys. Lett. 104, 061109 (2014)CrossRefGoogle Scholar
  27. 27.
    Budaev, B.V., Bogy, D.B.: Extension of Planck’s law of thermal radiation to systems with a steady heat flux. Ann. Phys. 523, 791–804 (2011)CrossRefGoogle Scholar
  28. 28.
    Zheng, H., Zhang, S., Yan, W., Pust, L., Fowler, D., Talke, F.E.: The effect of thermal radiation on thermal flying height control sliders. IEEE Trans. Magn. 46(6), 2376–2378 (2010)CrossRefGoogle Scholar
  29. 29.
    Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)Google Scholar
  30. 30.
    Liu, X., Zhang, Z.M.: Graphene-assisted near-field radiative heat transfer between corrugated polar materials. Appl. Phys. Lett. 104, 251911 (2014)CrossRefGoogle Scholar
  31. 31.
    Gervais, F., Piriou, B.: Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J. Phys. C Solid State Phys. 7, 2374–2386 (1974)CrossRefGoogle Scholar
  32. 32.
    Fukui, S., Kaneko, R.: Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. ASME J. Tribol. 110, 253–262 (1988)CrossRefGoogle Scholar
  33. 33.
    Li, H., Zheng, H., Yoon, Y., Talke, F.E.: Air bearing simulation for bit patterned media. Tribol. Lett. 33, 199–204 (2009)CrossRefGoogle Scholar
  34. 34.
    Juang, J.: Transient characteristics of nanoscale air bearings subjected to Joule heating. Tribol. Lett. 53, 255–260 (2014)CrossRefGoogle Scholar
  35. 35.
    Wahl, M., Lee, P., Talke, F.E.: An efficient finite element-based air bearing simulator for pivoted slider bearings using bi-conjugate gradient algorithms. STLE Tribol. Trans. 39(1), 130–138 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of California, San DiegoLa JollaUSA
  2. 2.Harbin Institute of TechnologyHarbinChina
  3. 3.West Digital CorporationSan JoseUSA

Personalised recommendations