Skip to main content

Experimental Investigation on the Effect of Operating Conditions on the Running-in Behavior of Lubricated Elliptical Contacts

Abstract

During running-in period, the friction coefficient and roughness profile of contacting elements experience drastic changes as a result of asperities deformation and wear. These transient changes affect the steady-state performance of mechanical elements such as gears, cam followers, and bearings. An experimental study on the effect of running-in operating conditions on the properties of a tribosystem is conducted using a pin-on-disk test rig. Curve-fit relationships are developed based on the experimental data to relate running-in duration, friction coefficient, and running-in weight loss to load, speed, and surface roughness. A model to predict the steady-state friction coefficient in the lubricated contact of pin and disk is developed based on the load-sharing concept.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

A :

Area of contact ellipse (m2)

A p :

Area of asperity (m2)

[A]:

Matrix of coefficients

D x :

Diameter of contact ellipse along x axis (m)

D y :

Diameter of contact ellipse along y axis (m)

d e :

Coefficient for asperities height comparison (m)

Ε :

Modulus of elasticity (Pa)

E′ :

Effective elastic modulus (Pa)

F :

Complete elliptic integral of first kind

F C :

Load carried by asperities (N)

F H :

Load carried by lubricant film (N)

F T :

Applied Load (N)

F ie :

Load carried by one asperity in elastic area (N)

F ieP :

Load carried by one asperity in elasto-plastic area (N)

F iP :

Load carried by one asperity in plastic area (N)

Ff,C :

Friction force related to asperities (N)

F f,H :

Friction force related to film (N)

F f :

Total friction force (N)

f ini :

Initial friction coefficient

f st :

Steady-state friction coefficient

f c :

Friction coefficient of the tip of asperities

f :

Friction coefficient by model

G :

Dimensionless material parameter

H c :

Dimensionless film thickness for elliptical conjunction

h c :

Central film thickness (m)

K :

Ellipticity parameter

L r :

Running-in distance (m)

p m :

Average Hertzian pressure (N/m2)

R :

Curvature sum (m)

R x :

Effective radius in x direction (m)

R y :

Effective radius in y direction (m)

R d :

Curvature difference (m)

R :

Radius (m)

R a :

Surface roughness (µm)

S :

Slope of the friction–distance curve

U :

Dimensionless speed parameter

u dif :

Equivalent velocity between tow surfaces (m/s)

\(\overline{u}\) :

Mean surface velocity in x direction (m/s)

V :

Relative velocity between pin and disk (m/s)

\(\overline{v}\) :

Mean surface velocity in y direction (m/s)

W :

Dimensionless load parameter

W L :

Disks’ weight loss (10−4 gr)

w i :

Equivalent height for asperities (m)

w e :

Asperity critical height for elastic deformation (m)

w p :

Asperity critical height for plastic deformation (m)

[X]:

Matrix for input parameters

x,y :

Cartesian coordinates

[Y]:

Matrix for output parameters

Z i :

Height of asperity (m)

α r :

Radius ratio

β :

Asperity radius (m)

γ 1 :

Lubricant load-sharing scaling factor

η 0 :

Absolute viscosity at ambient condition (Pa.s)

η rol :

Roeland’s viscosity (Pa.s)

ν :

Poisson’s ratio

ξ :

Pressure–viscosity coefficient (m2/N)

Ï„ H :

Lubricant shear stress (N/m2)

References

  1. Akbarzadeh, S., Khonsari, M.M.: Experimental and theoretical investigation of running-in. Tribol. Int. 44, 92–100 (2011)

    Article  Google Scholar 

  2. Blau, P.J.: On the nature of running-in. Tribol. Int. 38, 1007–1012 (2005)

    Article  Google Scholar 

  3. Tyfour, W.R., Beynon, J.H., Kapoor, A.: The steady-state wear behavior of pearlitic rail steel under dry rolling-sliding contact conditions. Wear 180, 79–89 (1995)

    Article  Google Scholar 

  4. Paczelta, I., Mroz, Z.: On the analysis of steady-state sliding wear processes. Tribol. Int. 42, 275–283 (2009)

    Article  Google Scholar 

  5. Beheshti, A., Khonsari, M.M.: An engineering approach for the prediction of wear in mixed lubricated contacts. Wear 308, 121–131 (2013)

    Article  Google Scholar 

  6. Beheshti, A., Khonsari, M.M.: A thermodynamic approach for prediction of wear Coefficient under unlubricated sliding condition. Tribol. Lett. 38, 347–354 (2010)

    Article  Google Scholar 

  7. Wu, Sh: A sliding wear model for partial-EHL contacts. ASME J. Tribol. 113, 134–141 (1991)

    Article  Google Scholar 

  8. Burwell, J.T., Strang, C.D.: On the empirical law of adhesive wear. J. Appl. Phys. 23, 1–19 (1952)

    Article  Google Scholar 

  9. Stolarski, T.A.: Adhesive wear of lubricated contacts. Tribol. Int. 12, 169–179 (1979)

    Article  Google Scholar 

  10. Blau, P.J., Devore, C.E.: Interpretations of the sliding friction break-in curves of alumina–aluminum couples. Wear 129, 81–92 (1989)

    Article  Google Scholar 

  11. Blau, P.J.: Mechanisms for transitional friction and wear behavior of sliding metals. Wear 72, 55–66 (1981)

    Article  Google Scholar 

  12. Lue, Q.: Origin of friction in running-in sliding wear of nitride coatings. Tribol. Lett. 37, 529–539 (2010)

    Article  Google Scholar 

  13. Blau, P.J.: Interpretations of the friction and wear break-in behavior of metals in sliding contact. Wear 71, 29–43 (1981)

    Article  Google Scholar 

  14. Kumar, R., Prakash, B., Sethuramiah, A.: A systematic methodology to characterize the running-in and steady-state wear processes. Wear 252, 445–453 (2002)

    Article  Google Scholar 

  15. Mezghani, S., Demirci, I., Yousfi, M., El Mansouri, M.: Running-in wear modeling of honed surface for combustion engine cylinderliners. Wear 302, 1360–1369 (2013)

    Article  Google Scholar 

  16. Blau, P.J.: Friction, Science and Technology. Marcel Dekker, New York (1996)

    Google Scholar 

  17. Johnson, K.L., Greenwood, J.A., Poon, S.Y.: A simple theory of asperity contact in elastohydrodynamic lubrication. Wear 19, 91–108 (1979)

    Article  Google Scholar 

  18. Gelinck, E.R.M., Schipper, D.J.: Calculation of Stribeck curves for line contact. Tribol. Int. 22, 175–181 (2000)

    Article  Google Scholar 

  19. Lu, X., Khonsari, M.M., Gelinck, E.R.M.: The Stribeck curve: experimental results and theoretical prediction. ASME J. Tribol. 128, 784–794 (2006)

    Article  Google Scholar 

  20. Akbarzadeh, S., Khonsari, M.M.: Performance of spur gears considering surface roughness and shear-thinning lubricant. ASME J. Tribol. 130, 021503–021510 (2008)

    Article  Google Scholar 

  21. Akbarzadeh, S., Khonsari, M.M.: Thermoelastohydrodynamic analysis of spur gears with consideration of spur gears. Tribol. Lett. 32, 129–141 (2008)

    Article  Google Scholar 

  22. Akbarzadeh, S., Khonsari, M.M.: On the prediction of running-in behavior in mixed-lubrication line contact. ASME J. Tribol 32, 032102–032112 (2010)

    Article  Google Scholar 

  23. Ebrahimi Serest, A., Akbarzadeh, S.: Mixed-elastohydrodynamic analysis of helical gears using load-sharing concept. Proc. Inst. Mech. Eng. Part J. 228, 320–331 (2014)

    Article  Google Scholar 

  24. Bahrami Ghahnavieh, A., Akbarzadeh, S., Mosaddegh, P.: A numerical study on the performance of straight bevel gears operating under mixed-lubrication regime. Mech. Mach. Theory 75, 27–40 (2014)

    Article  Google Scholar 

  25. Sojoudi, H., Khonsari, M.M.: On the behavior of friction in lubricated point contact with provision for surface roughness. ASME J. Tribol 132, 012102-1–012102-8 (2010)

    Google Scholar 

  26. Masjedi, M., Khonsari, M.M.: On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load. Tribol. Int. 82, 228–244 (2015)

    Article  Google Scholar 

  27. Beheshti, A Khonsari, M.M.: On the contact of curved rough surfaces: contact behavior and predictive formulas, ASME J. Appl. Mech

  28. Khonsari, M.M., Booser, E.R.: Applied tribology bearing design and lubrication. Wiley, West Sussex (2008)

    Google Scholar 

  29. Hamrock, B.J.: Fundamentals of fluid film lubrication. McGraw Hill, New York (1994)

    Google Scholar 

  30. Faraon, I.C.: Mixed Lubricant Line Contacts. Ph.D Thesis, University of Twente, Enschede, (2005)

  31. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300–319 (1966)

    Article  Google Scholar 

  32. Harris, T.A.: Rolling Bearing Analysis. Wiley, New York (2001)

    Google Scholar 

  33. Tabor, D.: The hardness of metals. Oxford University Press, Oxford (1951)

    Google Scholar 

  34. Johnson, K.L.: Contact mechanics. Cambridge University Press, UK (1985)

    Book  Google Scholar 

  35. Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME J. Tribol 122, 86–93 (2000)

    Article  Google Scholar 

  36. Masjedi, M., Khonsari, M.M.: Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. ASME J. Tribol 134, 011503 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Akbarzadeh.

Appendices

Appendix 1

Test number

Applied load (N)

Initial surface roughness (µm)

Relative speed (m/s)

f ini

f st

L r (m)

W L (10−4 gr)

1

20

0.3

0.1

0.152

0.145

470

12

2

20

0.3

0.2

0.151

0.136

390

10

3

20

0.3

0.3

0.151

0.135

350

10

4

20

0.3

0.4

0.149

0.130

310

8

5

20

0.3

0.5

0.153

0.130

310

7

6

20

0.9

0.1

0.167

0.145

380

16

7

20

0.9

0.2

0.165

0.135

350

18

8

20

0.9

0.3

0.164

0.127

290

15

9

20

0.9

0.4

0.165

0.123

270

13

10

20

0.9

0.5

0.164

0.121

250

13

11

20

1.5

0.1

0.176

0.135

300

24

12

20

1.5

0.2

0.174

0.128

280

21

13

20

1.5

0.3

0.176

0.122

230

19

14

20

1.5

0.4

0.173

0.119

210

18

15

20

1.5

0.5

0.174

0.118

200

15

16

40

0.3

0.1

0.149

0.142

420

19

17

40

0.3

0.2

0.151

0.137

350

16

18

40

0.3

0.3

0.151

0.129

300

16

19

40

0.3

0.4

0.150

0.121

250

12

20

40

0.3

0.5

0.149

0.119

250

13

21

40

0.9

0.1

0.165

0.140

340

26

22

40

0.9

0.2

0.164

0.133

300

20

23

40

0.9

0.3

0.164

0.126

270

20

24

40

0.9

0.4

0.166

0.120

230

18

25

40

0.9

0.5

0.163

0.117

200

17

26

40

1.5

0.1

0.175

0.135

280

41

27

40

1.5

0.2

0.173

0.130

240

31

28

40

1.5

0.3

0.173

0.123

210

28

29

40

1.5

0.4

0.174

0.117

200

28

30

40

1.5

0.5

0.174

0.116

190

25

31

60

0.3

0.3

0.149

0.125

280

20

32

60

0.3

0.4

0.150

0.120

250

17

33

60

0.3

0.5

0.150

0.119

220

15

34

60

0.9

0.3

0.164

0.123

250

28

35

60

0.9

0.4

0.164

0.118

220

22

36

60

0.9

0.5

0.164

0.116

210

20

37

60

1.5

0.3

0.174

0.123

190

42

38

60

1.5

0.4

0.176

0.118

170

30

39

60

1.5

0.5

0.173

0.118

160

29

Appendix 2

Test number

Repeatability

f ini

f st

L r (m)

WL (10−4 gr)

∆ f ini (%)

∆ f st (%)

∆ Lr (%)

∆ W L (%)

Test 1

1

0.152

0.145

470

12

2

0.7

4.2

8.3

2

0.155

0.146

450

13

Test 4

1

0.149

0.130

310

8

2

1.5

0

12.5

2

0.146

0.128

310

7

Test 8

1

0.164

0.127

290

15

0.6

0.8

10.3

13.3

2

0.165

0.128

260

13

Test 15

1

0.174

0.118

200

15

1.2

3.4

5

6.7

2

0.172

0.114

210

16

Test 17

1

0.151

0.137

350

16

0.7

0

2.9

12.5

2

0.150

0.137

360

18

Test 21

1

0.165

0.140

340

26

3.7

0.7

2.9

11.5

2

0.159

0.139

350

23

Test 24

1

0.166

0.120

230

18

2.4

2.4

0

0

2

0.162

0.118

230

18

Test 28

1

0.173

0.123

210

28

1.2

0.8

9.5

10.7

2

0.171

0.124

190

31

Test 33

1

0.150

0.119

220

15

0

3.4

4.5

6.7

2

0.150

0.115

230

14

Test 35

1

0.164

0.118

200

22

0.6

1.6

4.5

6.7

2

0.163

0.120

200

20

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdizadeh, M., Akbarzadeh, S., Shams, K. et al. Experimental Investigation on the Effect of Operating Conditions on the Running-in Behavior of Lubricated Elliptical Contacts. Tribol Lett 59, 6 (2015). https://doi.org/10.1007/s11249-015-0538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0538-x

Keywords

  • Wear
  • Running-in
  • Pin-on-disk
  • Least square method
  • Load-sharing