Skip to main content

Growth and Characterization of Arc Evaporated TiSiC–Ni Coatings

Abstract

TiSiC–Ni coatings, with Ni as alloying element, were prepared on Si, C 45, and 316 L steel substrates by cathodic arc technique in a reactive atmosphere of CH4. The coatings, with three different Ni contents (3.2, 6.8 and 16.2 at.%), were investigated in terms of microchemical and microstructural properties, mechanical characteristics and tribological performance using energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, hardness and adhesion measurements, and ball-on disc tribological testing. The coatings were found to consist of a mixture of different phases: face-centred cubic crystalline carbide, metallic Ni, and amorphous Si and C, with relative amounts depending on Ni concentration. All of the coatings exhibited dense and featureless morphologies. Ni addition to TiSiC coatings led to residual stress reduction (from −0.50 to −0.59 GPa) and improved adhesion strength (in the range 44–46 N). The TiSiC–Ni coatings with Ni contents below 7 at.% exhibited the best tribological properties under dry conditions (friction coefficients of ~0.32; wear rates from 3.16 to 3.66 × 10−6 mm3 N−1m−1).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Jansson, U., Lewin, E.: Sputter deposition of transition-metal carbide films: a critical review from a chemical perspective. Thin Solid Films 536, 1–24 (2013)

    Article  Google Scholar 

  2. Jansson, U., Lewin, E., Råsander, M., Eriksson, O., André, B., Wiklund, U.: Design of carbide-based nanocomposite thin films by selective alloying. Surf. Coat. Technol. 206, 583–590 (2011)

    Article  Google Scholar 

  3. Martínez-Martínez, D., López-Cartes, C., Fernández, A., Sánchez-López, J.C.: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517, 1662–1671 (2009)

    Article  Google Scholar 

  4. Lewin, E., Gorgoi, M., Schäfers, F., Svensson, S., Jansson, U.: Influence of sputter damage on the XPS analysis of metastable nanocomposite coatings. Surf. Coat. Technol. 204, 455–462 (2009)

    Article  Google Scholar 

  5. Lindquist, M., Wilhelmsson, O., Jansson, U., Wiklund, U.: Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings. Wear 266, 379–387 (2009)

    Article  Google Scholar 

  6. Knotek, O., Barimani, A.: On spinodal decomposition in magnetron-sputtered (Ti, Zr) nitride and carbide thin films. Thin Solid Films 174, 51–56 (1989)

    Article  Google Scholar 

  7. Koutzaki, S.H., Krzanowski, J.E., Nainaparampil, J.J.: Phase formation and microstructure in sputter-deposited Ti–Mo–C and Ti–W–C thin films. Metall. Mater. Trans. A 33, 1579–1588 (2002)

    Article  Google Scholar 

  8. Trindade, B., Vieira, M.T., Bauer-Grosse, E.: Amorphous phase forming ability in (W–C)-based sputtered films. Acta Mater. 46, 1731–1739 (1998)

    Article  Google Scholar 

  9. Trindade, B., Vieira, M.T.: Modification of the structural order of transition metal–carbon systems by the addition of a Group VIII element. Mater. Sci. Eng. A Struct. 352, 195–201 (2003)

    Article  Google Scholar 

  10. Zhang, S., Bui, X.L., Fu, Y.: Magnetron-sputtered nc-TiC/a-C(Al) tough nanocomposite coatings. Thin Solid Films 467, 261–266 (2004)

    Article  Google Scholar 

  11. Råsander, M., Lewin, E., Wilhelmsson, O., Sanyal, B., Klintenberg, M., Eriksson, O., Jansson, U.: Carbon release by selective alloying of transition metal carbides. J. Phys.: Condens. Matter 23, 355401-1–355401-9 (2011)

    Google Scholar 

  12. Lewin, E., Buchholt, K., Lu, J., Hultman, L., Spetz, A.L., Jansson, U.: Carbide and nanocomposite thin films in the Ti–Pt–C system. Thin Solid Films 518, 5104–5109 (2010)

    Article  Google Scholar 

  13. Soldán, J., Musil, J., Zeman, P.: Effect of Al addition on structure and properties of sputtered TiC films. Plasma Process. Polym. 4, S6–S10 (2007)

    Article  Google Scholar 

  14. Endrino, J.L., Nainaparampil, J.J., Krzanowski, J.E.: Microstructure and vacuum tribology of TiC–Ag composite coatings deposited by magnetron sputtering-pulsed laser deposition. Surf. Coat. Technol. 157, 95–101 (2002)

    Article  Google Scholar 

  15. Lauridsen, J., Nedfors, N., Jansson, U., Jensen, J., Eklund, P., Hultman, L.: Ti–B–C nanocomposite coatings deposited by magnetron sputtering. Appl. Surf. Sci. 258, 9907–9912 (2012)

    Article  Google Scholar 

  16. Sánchez-López, J.C., Abad, M.D., Justo, A., Gago, R., Endrino, J.L., García-Luis, A., Brizuela, M.: Phase composition and tribomechanical properties of Ti–B–C nanocomposite coatings prepared by magnetron sputtering. J. Phys. D Appl. Phys. 45, 375401-1–375401-7 (2012)

    Article  Google Scholar 

  17. Fella, R., Holleck, H.: Preparation and properties of metastable TiC/SiC PVD coatings for wear protection. Mater. Sci. Eng.: A 140, 676–681 (1991)

    Article  Google Scholar 

  18. Touanen, M., Teyssandier, F., Ducarroir, M., Maline, M., Hillel, R., Derep, J.L.: Microcomposite and nanocomposite structures from chemical vapor deposition in the silicon–titanium–carbon system. J. Am. Ceram. Soc. 76, 1473–1481 (1993)

    Article  Google Scholar 

  19. Naka, M., Sakai, H., Maeda, M., Mori, H.: Formation and thermal stability of amorphous Ti–Si–C alloys. Mater. Sci. Eng. A-Struct. 226–228, 774–778 (1997)

    Article  Google Scholar 

  20. Phani, A.R., Krzanowski, J.E., Nainaparampil, J.J.: Structural and mechanical properties of TiC and Ti–Si–C films deposited by pulsed laser deposition. J. Vac. Sci. Technol., A 19, 2252–2258 (2001)

    Article  Google Scholar 

  21. Koutzaki, S.H., Krzanowski, J.E., Nainaparampril, J.J.: Structure and mechanical properties of Ti–Si–C coatings deposited by magnetron sputtering. J. Vac. Sci. Technol., A 19, 1912–1918 (2001)

    Article  Google Scholar 

  22. Pécz, B., Tóth, L., di Forte-Poisson, M.A., Vacas, J.: Ti3SiC2 formed in annealed Al/Ti contacts to p-type SiC. Appl. Surf. Sci. 206, 8–11 (2002)

    Article  Google Scholar 

  23. Zehnder, T., Matthey, J., Schwaller, P., Klein, A., Steinmann, P.A., Patscheider, J.: Wear protective coatings consisting of TiC–SiC–a-C: H deposited by magnetron sputtering. Surf. Coat. Technol. 163–164, 238–244 (2003)

    Article  Google Scholar 

  24. Han, D., Song, P.K., Cho, K.M., Park, Y.H., Kim, K.H.: Synthesis and mechanical properties of Ti–Si–C films by a plasma-enhanced chemical vapor deposition. Surf. Coat. Technol. 188–189, 446–451 (2004)

    Article  Google Scholar 

  25. Krzanowski, J.E., Koutzaki, S.H.: Mechanical properties of Sputter-deposited titanium–silicon–carbon films. J. Am. Ceram. Soc. 84, 672–674 (2001)

    Article  Google Scholar 

  26. Eklund, P., Emmerlich, J., Högberg, H., Wilhelmsson, O., Isberg, P., Birch, J., Persson, P.O.A., Jansson, U., Hultman, L.: Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films. J. Vac. Sci. Technol., B 23, 2486–2495 (2005)

    Article  Google Scholar 

  27. Gulbiński, W., Gilewicz, A., Suszko, T., Warcholiński, B., Kukliński, Z.: Ti–Si–C sputter deposited thin film coatings. Surf. Coat. Technol. 180–181, 341–346 (2004)

    Article  Google Scholar 

  28. Rester, M., Neidhardt, J., Eklund, P., Emmerlich, J., Ljungcrantz, H., Hultman, L., Mitterer, C.: Annealing studies of nanocomposite Ti–Si–C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng. A Struct. 429, 90–95 (2006)

    Article  Google Scholar 

  29. Alami, J., Eklund, P., Emmerlich, J., Wilhelmsson, O., Jansson, U., Högberg, H., Hultman, L., Helmersson, U.: High-power impulse magnetron sputtering of Ti–Si–C thin films from a Ti3SiC2 compound target. Thin Solid Films 515, 1731–1736 (2006)

    Article  Google Scholar 

  30. Eklund, P., Virojanadara, C., Emmerlich, J., Johansson, L.I., Högberg, H., Hultman, L.: Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films. Phys. Rev. B 74, 045417-1–045417-7 (2006)

    Article  Google Scholar 

  31. Lange, C., Barsoum, M.W., Schaaf, P.: Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. Appl. Surf. Sci. 254, 1232–1235 (2007)

    Article  Google Scholar 

  32. Lopes, C., Parreira, N.M.G., Carvalho, S., Cavaleiro, A., Rivière, J.P., Le Bourhis, E., Vaz, F.: Magnetron sputtered Ti–Si–C thin films prepared at low temperatures. Surf. Coat. Technol. 201, 7180–7186 (2007)

    Article  Google Scholar 

  33. Eklund, P.: Novel ceramic Ti–Si–C nanocomposite coatings for electrical contact applications. Surf. Eng. 23, 406–411 (2007)

    Article  Google Scholar 

  34. Lauridsen, J., Eklund, P., Joelsson, T., Ljungcrantz, H., Öberg, Å., Lewin, E., Jansson, U., Beckers, M., Högberg, H., Hultman, L.: High-rate deposition of amorphous and nanocomposite Ti–Si–C multifunctional coatings. Surf. Coat. Technol. 205, 299–305 (2010)

    Article  Google Scholar 

  35. Jiang, J., Hao, J., Pang, X., Wang, P., Liu, W.: Structure and characteristics of amorphous (Ti, Si)–C: H films deposited by reactive magnetron sputtering. Diam. Relat. Mater. 19, 1172–1177 (2010)

    Article  Google Scholar 

  36. Munteanu, D., Ionescu, C., Olteanu, C., Munteanu, A., Davin, F., Cunha, L., Moura, C., Vaz, F.: Influence of composition and structural properties in the tribological behavior of magnetron sputtered Ti–Si–C nanostructured thin films, prepared at low temperature. Wear 268, 552–557 (2010)

    Article  Google Scholar 

  37. Hassani, S., Klemberg-Sapieha, J.E., Martinu, L.: Mechanical, tribological and erosion behaviour of super-elastic hard Ti–Si–C coatings prepared by PECVD. Surf. Coat. Technol. 205, 1426–1430 (2010)

    Article  Google Scholar 

  38. Strauss, H.W., Chromik, R.R., Hassani, S., Klemberg-Sapieha, J.E.: In situ tribology of nanocomposite Ti–Si–C–H coatings prepared by PE-CVD. Wear 272, 133–148 (2011)

    Article  Google Scholar 

  39. Eklund, P., Joelsson, T., Ljungcrantz, H., Wilhelmsson, O., Czigány, Z., Högberg, H., Hultman, L.: Microstructure and electrical properties of Ti–Si–C–Ag nanocomposite thin films. Surf. Coat. Technol. 201, 6465–6469 (2007)

    Article  Google Scholar 

  40. Vitelaru, C., Balaceanu, M., Parau, A., Luculescu, C.R., Vladescu, A.: Investigation of nanostructured TiSiC–Zr and TiSiC–Cr hard coatings for industrial applications. Surf. Coat. Technol. 251, 21–28 (2014)

    Article  Google Scholar 

  41. Li, Q., Jiang, F.Q., Leng, Y.X., Wei, R.H., Huang, N.: Microstructure and tribological properties of Ti(Cr)SiCN coating deposited by plasma enhanced magnetron sputtering. Vacuum 89, 168–173 (2013)

    Article  Google Scholar 

  42. Zheng, Y.J., Leng, Y.X., Xin, X., Xu, Z.Y., Jiang, F.Q., Wei, R., Huang, N.: Evaluation of mechanical properties of Ti(Cr)SiC(O)N coated cemented carbide tools. Vacuum 90, 50–58 (2013)

    Article  Google Scholar 

  43. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, PhV, Sheveyko, A.N., Fernandez, A., Petrzhik, M.I.: Comparative investigation of Al- and Cr-doped TiSiCN coatings. Surf. Coat. Technol. 205, 4640–4648 (2011)

    Article  Google Scholar 

  44. Andre, B., Lewin, E., Jansson, U., Wiklund, U.: Friction and contact resistance of nanocomposite Ti–Ni–C coatings. Wear 270, 555–566 (2011)

    Article  Google Scholar 

  45. Ghita, R.V., Negrila, C.C., Ungureanu, F., Logofatu, C.: XPS study of chemical sulphur-passivated n-GaAs. Optoelectron. Adv. Mater. 4, 1736–1739 (2010)

    Google Scholar 

  46. Janssen, G.C.A.M., Abdalla, M.M., van Keulen, F., Pujada, B.R., van Venrooy, B.: Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517, 1858–1867 (2009)

    Article  Google Scholar 

  47. Crist, B.V.: Handbook of Monochromatic XPS Spectra, vol. 1. XPS International LLC, Mountain View (2004)

    Google Scholar 

  48. Lewin, E., Persson, P.O.Å., Lattemann, M., Stüber, M., Gorgoi, M., Sandell, A., Ziebert, C., Schäfers, F., Braun, W., Halbritter, J., Ulrich, S., Eberhardt, W., Hultman, L., Siegbahn, H., Svensson, S., Jansson, U.: On the origin of a third spectral component of C1s XPS-spectra for nc-TiC/a-C nanocomposite thin films. Surf. Coat. Technol. 202, 3563–3570 (2008)

    Article  Google Scholar 

  49. Abadias, G.: Stress and preferred orientation in nitride-based PVD coatings. Surf. Coat. Technol. 202, 2223–2235 (2008)

    Article  Google Scholar 

  50. Tengstrand, O., Nedfors, N., Alling, B., Jansson, U., Flink, A., Eklund, P., Hultman, L.: Incorporation effects of Si in TiCx thin films. Surf. Coat. Technol. 258, 392–397 (2014)

    Article  Google Scholar 

  51. Johnson, L.J.S., Rogstrom, L., Johansson, M.P., Oden, M., Hultman, L.: Microstructure evolution and age hardening in (Ti, Si)(C, N) thin films deposited by cathodic arc evaporation. Thin Solid Films 519, 1397–1403 (2010)

    Article  Google Scholar 

  52. Musil, J., Louda, M., Soukup, Z., Kubásek, M.: Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films. Diam. Relat. Mater. 17, 1905–1911 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Work supported under the Grant of the Romanian National Authority for Scientific Research (CNCS – UEFISCDI), projects no. PN-II-PT-PCCA-2011-3.2-1453, PN-II-ID-PCE-2011-3-1016, and by the Core Programme project PN 27 N/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vladescu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balaceanu, M., Parau, A.C., Braic, M. et al. Growth and Characterization of Arc Evaporated TiSiC–Ni Coatings. Tribol Lett 58, 43 (2015). https://doi.org/10.1007/s11249-015-0521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0521-6

Keywords

  • TiSiC–Ni coatings
  • Microstructure
  • Mechanical characteristics
  • Friction and wear