Advertisement

Tribology Letters

, 58:11 | Cite as

Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of Dimensionality

  • Bo N. J. Persson
Original Paper

Abstract

Recently, a 1D mapping procedure has been applied to many contact mechanics problems between randomly rough surfaces. I present a simple “back-of-the-envelope” argument to show that this theory fails qualitatively, in particular when surface roughness occurs on many length scales.

Keywords

Contact mechanics Elastic foundation Randomly rough surfaces 

Notes

Acknowledgments

The research work was performed within a Reinhart-Koselleck project funded by the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank DFG for the project support under the reference German Research Foundation DFG-Grant: MU 1225/36-1. This work is supported in part by COST Action MP1303.

References

  1. 1.
    Popov, V.L., Heß, M.: Method of Dimensionality Reduction in Contact Mechanics and Friction. Springer, Berlin (2014)Google Scholar
  2. 2.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965)CrossRefGoogle Scholar
  3. 3.
    Li, Q., Dimaki, A., Popov, M., Psakhie, S.G., Popov, V.L.: Kinetics of the coefficient of friction of elastomers. Sci. Rep. 4, 5795 (2014)Google Scholar
  4. 4.
    Popov, V.L., Voll, L., Li, Q., Chai, Y.S., Popov, M.: Generalized law of friction between elastomers and differently shaped rough bodies. Sci. Rep. 4, 3750 (2014)Google Scholar
  5. 5.
    Pohrt, R., Popov, V.L.: Contact stiffness of randomly rough surfaces. Sci. Rep. 3, 3293 (2013)CrossRefGoogle Scholar
  6. 6.
    Paggi, M., Pohrt, R., Popov, V.L.: Partial-slip frictional response of rough surfaces. Sci. Rep. 4, 5178 (2014)Google Scholar
  7. 7.
    Geike, T., Popov, V.L.: Mapping of three-dimensional contact problems into one dimension. Phys. Rev. E 76, 036710 (2007)CrossRefGoogle Scholar
  8. 8.
    Pohrt, R., Popov, V.L.: Normal contact stiffness of elastic solids with fractal rough surfaces. Phys. Rev. Lett. 108, 104301 (2012)CrossRefGoogle Scholar
  9. 9.
    Pohrt, R., Popov, V.L., Filippov, A.: Normal contact stiffness of elastic solids with fractal rough surfaces for one- and three-dimensional systems. Phys. Rev. E 86, 026710 (2012)CrossRefGoogle Scholar
  10. 10.
    Popov, V.L., Filippov, A.E.: Force of friction between fractal rough surface and elastomer. Tech. Phys. Lett. 36, 525 (2010)CrossRefGoogle Scholar
  11. 11.
    Popov, V.L.: Contact Mechanics and Friction, Physical Principles and Applications. Springer, Berlin (2010). (See Chapter 19)Google Scholar
  12. 12.
    Phys. Mesomech. 15, 4 (2012)Google Scholar
  13. 13.
    Popov, V.L., Filippov, A.E.: Applicability of a reduced model to description of real contacts between rough surfaces with different Hirsch indices. Tech. Phys. Lett. 34, 722 (2008)CrossRefGoogle Scholar
  14. 14.
    Birthe, G., Pohrt, R., Teidelt, E., et al.: Maximum micro-slip in tangential contact of randomly rough self-affine surfaces. Wear 309, 256 (2014)CrossRefGoogle Scholar
  15. 15.
    Popov, V.L.: Method of dimensionality reduction in contact mechanics and tribology. Heterogeneous media. Phys. Mesomech. 17, 50 (2014)CrossRefGoogle Scholar
  16. 16.
    Li, Q., Popov, M., Dimaki, A., et al.: Friction between a viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett. 111, 034301 (2013)CrossRefGoogle Scholar
  17. 17.
    Psakhie, S.G., Popov, V.L.: Mesoscopic nature of friction and numerical simulation methods in tribology. Phys. Mesomech. 15, 251 (2012)CrossRefGoogle Scholar
  18. 18.
    Dimaki, A.V., Popov, V.L.: The method of reduction of dimensionality and its application to simulation of elastomer friction under complex dynamic loads. Phys. Mesomech. 15, 319 (2012)CrossRefGoogle Scholar
  19. 19.
    Pohrt, R., Popov, V.L.: Investigation of the dry normal contact between fractal rough surfaces using the reduction method, comparison to 3D simulations. Phys. Mesomech. 15, 275 (2012)CrossRefGoogle Scholar
  20. 20.
    Popov, V.L., Filippov, A.E.: Adhesive properties of contacts between elastic bodies with randomly rough self-affine surfaces: a simulation with the method of reduction of dimensionality. Phys. Mesomech. 15, 324 (2012)CrossRefGoogle Scholar
  21. 21.
    Nguyen, H.X., Teidelt, E., Popov, V.L., et al.: Dynamic tangential contact of rough surfaces in stick-slip microdrives: modeling and validation using the method of dimensionality Reduction. Phys. Mesomech. 17(4), 304–310 (2014)CrossRefGoogle Scholar
  22. 22.
    Grzemba, B., Pohrt, R., Teidelt, E., et al.: Maximum micro-slip in tangential contact of randomly rough self-affine surfaces. Wear 309, 256 (2014)CrossRefGoogle Scholar
  23. 23.
    Popov, V.L.: Basic ideas and applications of the method of reduction of dimensionality in contact mechanics. Phys. Mesomech. 15(5–6), 254–263 (2012)CrossRefGoogle Scholar
  24. 24.
    Teidelt, E., Willert, E., Filippov, A.E., et al.: Modeling of the dynamic contact in stick-slip microdrives using the method of reduction of dimensionality. Phys. Mesomech. 15, 287 (2012)CrossRefGoogle Scholar
  25. 25.
    Lyashenko, I.A., Pastewka, L., Persson, B.N.J.: On the validity of the method of reduction of dimensionality: area of contact, average interfacial separation and contact stiffness. Tribol. Lett. 52(3), 223–229 (2013)CrossRefGoogle Scholar
  26. 26.
    Lyashenko, I.A., Pastewka, L., Persson, B.N.J.: Comment on friction between a viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett. 111, 189401 (2013)CrossRefGoogle Scholar
  27. 27.
    Pastewka, L., Prodanov, N., Lorenz, B., Müser, M.H., Robbins, M.O., Persson, B.N.J.: Finite-size effects in the interfacial stiffness of rough elastic contacts. Phys. Rev. E 87, 062809 (2013). See also arXiv:1210.4255v1 and arXiv:1210.4635v1
  28. 28.
    Scaraggi, M., Putignano, C., Carbone, G.: Elastic contact of rough surfaces: a simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear 297, 811 (2013)CrossRefGoogle Scholar
  29. 29.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840 (2001)CrossRefGoogle Scholar
  30. 30.
    Klüppel, M., Heinrich, G.: Rubber friction on self-affine road tracks. Rubber Chem. Technol. 73, 578 (2000)CrossRefGoogle Scholar
  31. 31.
    Westergaard, H.M.: Bearing pressures and cracks. Trans. ASME J. Appl. Mech. 6, 49 (1939)Google Scholar
  32. 32.
    Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett. 54, 99 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Peter Grünberg Institut-1FZ-JülichJülichGermany

Personalised recommendations