Skip to main content
Log in

The Deformation, Strain Hardening, and Wear Behavior of Chromium-Alloyed Hadfield Steel in Abrasive and Impact Conditions

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The alloying of Hadfield steels aims at enhanced mechanical properties and improvements in the wear resistance. In this work, the impact and abrasive properties of a chromium-alloyed high-manganese Hadfield steel were experimentally studied using a wide variety of testing techniques and characterization methods. In addition, an in-service sample was characterized to identify the wear and hardening mechanisms in a real application (jaw crusher). The dynamic mechanical behavior of the steel was determined using the Hopkinson split bar technique. The abrasion properties were studied with three-body abrasion tests using several different natural abrasives. The effects of existing plastic strain and normal loading on the surface hardening and wear rate were further investigated with scratch testing. High-velocity impact testing was performed to evaluate the effect of pre-strain on the impact wear behavior of the material. It was shown that the dynamic loading affects both the yield behavior and the strain hardening rate of the studied steel. The connection between pre-strain, hardness, and wear rate in abrasion was established. In impact conditions, plastic straining of the surface layer first has a positive effect on the wear resistance, but when strain hardening reached the observed ductility limit, it showed an adverse effect on the material’s performance. The addition of chromium and an increase in the manganese content from the nominal ASTM Hadfield composition provided some improvements in the strength, ductility, and surface hardening of the studied steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ASTM A128/A128 M-93, Standard specification for steel castings, austenitic manganese. ASTM Volume 01.02 Ferrous Castings; Ferroalloys. (2012)

  2. Dastur, Y.N., Leslie, W.C.: Mechanism of work hardening in Hadfield manganese steel. Metall. Mater. Trans. A 12, 749–759 (1981)

    Article  Google Scholar 

  3. Adler, P.H., Olson, G.B., Owen, W.S.: Strain hardening of Hadfield manganese steel. Metall. Mater. Trans. A 17, 1725–1737 (1986)

    Article  Google Scholar 

  4. Owen, W.S., Grujicic, M.: Strain hardening of austenitic Hadfield manganese steels. Acta Mater. 47(1), 111–126 (1999)

    Article  Google Scholar 

  5. Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y.I., Maier, H.J.: Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater. 48, 1345–1359 (2000)

    Article  Google Scholar 

  6. Bayraktar, E., Khalid, F.A., Levaillant, C.: Deformation and fracture behaviour of high manganese austenitic steel. J. Mater. Process. Technol. 147, 145–154 (2004)

    Article  Google Scholar 

  7. Canadinc, D., Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J.: The role of nitrogen on the deformation response of Hadfield steel single crystals. Metall. Mater. Trans. A 34, 1821–1831 (2003)

    Article  Google Scholar 

  8. Zuidema, B.K., Subramanyam, D.K., Leslie, W.C.: The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metall. Mater. Trans. A 18(9), 1629–1639 (1987)

    Article  Google Scholar 

  9. El-Mallawi, I., Abdel-Karim, R., Naguib, A.: Evaluation of effect of chromium on wear performance of high manganese steel. J. Mater. Sci. Technol. 17, 1385–1390 (2001)

    Article  Google Scholar 

  10. Wen, Y.H., Peng, H.B., Si, H.T., Xiong, R.L., Raabe, D.: A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Mater. Des. 55, 798–804 (2014)

    Article  Google Scholar 

  11. Abbasi, M., Kheirandish, S., Kharrazi, Y., Hejazi, J.: On the comparison of the abrasive and wear behavior of aluminum alloyed and standard Hadfield steels. Wear 268, 202–207 (2010)

    Article  Google Scholar 

  12. Zhang, G.-S., Xing, J.-D., Gao, Y.M.: Impact resistance of WC/Hadfield steel composite and its interfacial characteristics. Wear 260, 728–734 (2006)

    Article  Google Scholar 

  13. Apostol, M., Vuoristo, T., Kuokkala, V.-T.: High temperature high strain rate testing with a compressive SHPB. J. Phys. IV 110, 459–464 (2003)

    Google Scholar 

  14. Terva, J., Teeri, T., Kuokkala, V.-T., Siitonen, P., Liimatainen, J.: Abrasive wear of steel against gravel with different rock–steel combinations. Wear 267(11), 1821–1831 (2009)

    Article  Google Scholar 

  15. Apostol M., Kuokkala, V-T., Laukkanen, A., Holmberg, K., Waudby, R., Lindroos, M.: High velocity particle impactor—Modeling and experimental verification of impact wear test. World Tribology Congress WTC 2013, Turin, Italy, 8–13 September (2013)

  16. Sarlin, E., Apostol, M., Lindroos, M., Kuokkala, V.-T., Vuorinen, J., Lepistö, T., Vippola, M.: Impact properties of novel corrosion resistant hybrid structures. Compos. Struct. 108, 886–893 (2014)

    Article  Google Scholar 

  17. Petrov, Y., Gavriljuk, V., Berns, H., Schmalt, F.: Surface structure of stainless and Hadfield steels after impact wear. Wear 260, 687–691 (2006)

    Article  Google Scholar 

  18. Yan, W., Fang, L., Sun, K., Xu, Y.: Effect of surface work hardening on wear behavior of Hadfield steel. Mater. Sci. Eng. A 460–461, 542–549 (2007)

    Article  Google Scholar 

  19. Lee, W.-S., Chen, T.-H.: Plastic deformation and fracture characteristics of Hadfield steel subjected to high-velocity impact loading. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 216(10), 971–982 (2002)

    Article  Google Scholar 

  20. Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J., Kireeva, I.V.: Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scr. Mater. 44, 337–343 (2001)

    Article  Google Scholar 

  21. Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J., Kireeva, I.V.: The effect of twinning and slip on the Bauschinger effect of Hadfield steel single crystals. Metall. Mater. Trans. A 696(32), 695–706 (2001)

    Article  Google Scholar 

  22. Steinmetz, D., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed-Akbari, A., Hickel, T., Roters, F., Raabe, D.: Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater. 61, 494–510 (2013)

    Article  Google Scholar 

  23. Canadinc, D., Sehitoglu, H., Maier, H.J.: The dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals. Mater. Sci. Eng. A 454–455, 662–666 (2007)

    Article  Google Scholar 

  24. Efstathiou, C., Sehitoglu, H.: Strain hardening and heterogenous deformation during twinning in Hadfield steels. Acta Mater. 58, 1479–1488 (2010)

    Article  Google Scholar 

  25. Zhang, W., Wu, J., Wen, Y., Ye, J., Li, N.: Characterization of different work hardening behavior in AISI 321 stainless steel and Hadfield steel. J. Mater. Sci. 45, 3433–3437 (2010)

    Article  Google Scholar 

  26. Hutchinson, B., Ridley, N.: On dislocation accumulation and work hardening in Hadfield steel. Scr. Mater. 55, 299–302 (2006)

    Article  Google Scholar 

  27. Tsakiris, V., Edmonds, D.V.: Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng. A 273–275, 430–436 (1999)

    Article  Google Scholar 

  28. Lindroos, M., Kuokkala, V.-T., Lehtovaara, A., Kivikytö-Reponen, P.: Effects of strain and strain rate on the abrasive wear behavior of high manganese austenitic steel. Key Eng. Mater. 527, 211–216 (2013)

    Article  Google Scholar 

  29. Khosravifard, A., Moshksar, M.M., Ebrahimi, R.: Mechanical behavior of TWIP steel in high strain rate torsional tests. Int. J. ISSI 9(1), 15–19 (2001)

    Google Scholar 

  30. Xiong, Z., Ren, X., Bao, W., Shu, J., Li, S., Qu, H.: Effect of high temperature and high strain rate on the dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel. Int. J. Miner. Metall Mater. 20(9), 835–841 (2013)

    Article  Google Scholar 

  31. Xiong, Z., Ren, X., Bao, W., Shu, J., Li, S., Qu, H.: Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments. Mater. Sci. Eng. A 530, 426–431 (2011)

    Article  Google Scholar 

  32. Curtze, S., Kuokkala, V.-T.: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 58, 5129–5141 (2010)

    Article  Google Scholar 

  33. Curtze, S., Kuokkala, V.-T., Oikari, A., Talonen, J., Hänninen, H.: Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater. 59, 1068–1076 (2011)

    Article  Google Scholar 

  34. Abbasi, M., Kheirandish, S., Kharrazi, Y., Hejazi, J.: The fracture and plastic deformation of aluminum alloyed Hadfield steels. Mater. Sci. Eng. A 513–514, 72–76 (2009)

    Article  Google Scholar 

  35. Grässel, O., Krüger, L., Frommayer, G., Meyer, L.W.: High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development—properties—application. Int. J. Plast 16, 1391–1409 (2000)

    Article  Google Scholar 

  36. Pierce, D.T., Jiménez, J.A., Bentley, J., Raabe, D., Oskay, C., Wittig, J.E.: The influence of manganese content to stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiments and theory. Acta Mater. 68, 238–253 (2014)

    Article  Google Scholar 

  37. Chen, L., Zhao, Y., Qin, X.: Some aspects of high manganese twinning-induced plasticity (TWIP) steels, a review. Acta Metall. Sin. 26(1), 1–15 (2013)

    Article  Google Scholar 

  38. Tian, X., Zhang, Y.S.: Effect of Cr and Al content on the stacking fault energy in γ-Fe-Mn alloys. Acta Metall. Sin. 16(3), 211–216 (2003)

    Google Scholar 

  39. Raabe, D., Springer, H., Gutierrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.-B., Koyama, M., Choi, P.-P., Tsukazi, K.: Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels. Miner. Met. Mater. Soc. 66(9), 1845–1856 (2014)

    Article  Google Scholar 

  40. Canadinc, D., Sehitoglu, H., Maier, H.J., Chumlyakov, Y.I.: Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mater. 53, 1831–1842 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study was a part of the FIMECC DEMAPP program funded by Tekes and the participating companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Lindroos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindroos, M., Apostol, M., Heino, V. et al. The Deformation, Strain Hardening, and Wear Behavior of Chromium-Alloyed Hadfield Steel in Abrasive and Impact Conditions. Tribol Lett 57, 24 (2015). https://doi.org/10.1007/s11249-015-0477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0477-6

Keywords

Navigation