Skip to main content
Log in

Tribological Properties of Fabric Self-Lubricating Liner Based on Organic Montmorillonite (OMMT) Reinforced Phenolic (PF) Nanocomposites as Hybrid Matrices

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Organic montmorillonite (OMMT) reinforced phenolic (PF) nanocomposites with OMMT contents of 2 and 5 wt% were fabricated by the two-step OMMT intercalation process, resulting in the further increase of interlayer spacing of OMMT from 2.07 to 4.27 nm. Prepared OMMT/PF composites were found to possess a mix of intercalated and agglomerated clay structures via X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Results obtained via differential scanning calorimetry (DSC) and thermogravimetry (TG) revealed that the thermal stability of PF matrices was enhanced by the incorporation of OMMT. With OMMT/PF nanocomposites as hybrid matrices, fabric self-lubricating liners were prepared to evaluate their tribological properties. Effects of OMMT on friction coefficient, wear loss and wear morphology of fabric self-lubricating liner, based on OMMT/PF nanocomposites, were studied via long-term friction and wear tests. Tribological properties of liners with different OMMT contents were investigated by imitating a high-velocity/light-load condition. The addition of OMMT appears to enhance the friction and wear properties of fabric self-lubricating liner, and the preferable OMMT content is around 2 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Park, D.C., Lee, S.M., Kim, B.C., Kim, H.S., Lee, D.G.: Development of heavy duty hybrid carbon–phenolic hemispherical bearings. Compos. Struct. 73(1), 88–98 (2006)

    Article  Google Scholar 

  2. Kim, S.S., Yu, H.N., Hwang, I.U., Kim, S.N., Suzuki, K., Sada, H.: The sliding friction of hybrid composite journal bearing under various test conditions. Tribol. Lett. 35(3), 211–219 (2009)

    Article  Google Scholar 

  3. Lancaster, J.K.: Accelerated wear testing of PTFE composite bearing materials. Tribol. Int. 12, 65–75 (1979)

    Article  Google Scholar 

  4. Rattan, R., Bijwe, J., Fahim, M.: Optimization of weave of carbon fabric for best combination of strength and tribo-performance of polyetherimide composites in adhesive wear mode. Wear 264(1), 96–105 (2008)

    Article  Google Scholar 

  5. Qi, X.W., Ma, J., Jia, Z.N., Yang, Y.L., Gao, H.B.: Effects of weft density on the friction and wear Properties of self-lubricating fabric liners for journal bearings under heavy load conditions. Wear 318(1–2), 124–129 (2014)

    Article  Google Scholar 

  6. Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)

    Article  Google Scholar 

  7. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  Google Scholar 

  8. Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)

    Article  Google Scholar 

  9. Kurahatti, R.V., Surendranathan, A.O., Kori, S.A., Singh, N., Kumar, A.R., Srivastava, S.: Defence applications of polymer nanocomposites. Def. Sci. J. 60(5), 551–563 (2010)

    Article  Google Scholar 

  10. Briscoe, B.J., Sinha, S.K.: Tribological applications of polymers and their composites: past, present and future prospects. In: Friedrich, K., Schlarb, A.K. (eds.) Tribology and Interface Engineering Series, pp. 1–14. Elsevier, Amsterdam (2008)

  11. Njuguna, J., Pielichowski, K.: Polymer nanocomposites for aerospace applications: properties. Adv. Eng. Mater. 5(11), 769–778 (2003)

    Article  Google Scholar 

  12. Winey, K.I., Vaia, R.A.: Polymer nanocomposites. MRS Bull. 32(04), 314–322 (2007)

    Article  Google Scholar 

  13. Ray, S.S., Bousmina, M.: Polymer Nanocomposites and Their Applications. American Scientific, Stevenson Ranch (2006)

    Google Scholar 

  14. Wetzel, B., Haupert, F., Qiu Zhang, M.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63(14), 2055–2067 (2003)

    Article  Google Scholar 

  15. Wetzel, B., Haupert, F., Friedrich, K., Zhang, M.Q., Rong, M.Z.: Impact and wear resistance of polymer nanocomposites at low filler content. Polym. Eng. Sci. 42(9), 1919–1927 (2002)

    Article  Google Scholar 

  16. Cai, H.F., Yan, E., Xue, Q., Liu, W.: Investigation of tribological properties of Al2O3–polyimide nanocomposites. Polym. Test. 22(8), 875–882 (2003)

    Article  Google Scholar 

  17. Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254(5), 573–580 (2003)

    Article  Google Scholar 

  18. Rong, M.Z., Zhang, M.Q., Ruan, W.H.: Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater. Sci. Technol. 22(7), 787–796 (2006)

    Article  Google Scholar 

  19. Chen, H., Jacobs, O., Wu, W., Rüdiger, G., Schädel, B.: Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polym. Test. 26(3), 351–360 (2007)

    Article  Google Scholar 

  20. Zhang, M.Q., Rong, M.Z., Yu, S.L., Wetzel, B., Friedrich, K.: Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear 253(9), 1086–1093 (2002)

    Article  Google Scholar 

  21. Huang, T., Xin, Y., Li, T., Nutt, S., Su, C., Chen, H., Liu, P., Lai, Z.: Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl. Mater. Interfaces 5(11), 4878–4891 (2013)

    Article  Google Scholar 

  22. Min, C., Nie, P., Song, H.J., Zhang, Z., Zhao, K.: Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 80, 131–140 (2014)

    Article  Google Scholar 

  23. Sinha Ray, S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)

    Article  Google Scholar 

  24. Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)

    Article  Google Scholar 

  25. Qi, Z.N., Shang, W.Y.: Theory and Practice of Polymer–Layered Silicate Nanocomposite. Chemical Industry Press, Beijing (2002)

    Google Scholar 

  26. Jo, B.W., Park, S.K., Kim, D.K.: Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Constr. Build. Mater. 22(1), 14–20 (2008)

    Article  Google Scholar 

  27. Nikolaidis, A.K., Achilias, D.S., Karayannidis, G.P.: Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. Ind. Eng. Chem. Res. 50(2), 571–579 (2010)

    Article  Google Scholar 

  28. Hu, D., Chen, J., Sun, S., Liu, T., Zhao, L.: Solubility and diffusivity of CO2 in isotactic polypropylene/nanomontmorillonite composites in melt and solid states. Ind. Eng. Chem. Res. 53(7), 2673–2683 (2014)

    Article  Google Scholar 

  29. Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., Chung, T.C.: Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13(10), 3516–3523 (2001)

    Article  Google Scholar 

  30. Novakov, I.A., Rakhimova, N.A., Nistratov, A.V., Kudashev, S.V., Gugina, S.Y.: Structure and tribological behavior of polydiene urethanes based on oligomeric compositions modified by polyfluorine alkyl organophilic montmorillonite. J. Frict. Wear 32(4), 258–268 (2011)

    Article  Google Scholar 

  31. Novakov, I.A., Rakhimova, N.A., Nistratov, A.V., Kudashev, S.V., Gugina, S.Y.: Synthesis, structure, properties, and tribological behavior of materials based on polythio urethanes modified by polyfluorine-and copper-containing Na+-montmorillonite under conditions of thermo-oxidative and light aging. J. Frict. Wear 32(5), 356–367 (2011)

    Article  Google Scholar 

  32. Yu, Y., Gu, J., Kang, F., Kong, X., Mo, W.: Surface restoration induced by lubricant additive of natural minerals. Appl. Surf. Sci. 253(18), 7549–7553 (2007)

    Article  Google Scholar 

  33. Pogodaev, L.I., Buyanovskii, I.A., Kryukov, E.Y., Kuz’min, V.N., Usachev, V.V.: The mechanism of interaction between natural laminar hydrosilicates and friction surfaces. J. Mach. Manuf. Reliab. 38(5), 476–484 (2009)

    Article  Google Scholar 

  34. Alexandre, M., Dubois, P.: Polymer–layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 28(1), 1–63 (2000)

    Article  Google Scholar 

  35. Wu, Z., Zhou, C., Qi, R.: The preparation of phenolic resin/montmorillonite nanocomposites by suspension condensation polymerization and their morphology. Polym. Compos. 23(4), 634–646 (2002)

    Article  Google Scholar 

  36. Jiang, W., Chen, S.H., Chen, Y.: Nanocomposites from phenolic resin and various organo-modified montmorillonites: preparation and thermal stability. J. Appl. Polym. Sci. 102(6), 5336–5343 (2006)

    Article  Google Scholar 

  37. Yang, Y.L., Ma, J., Qi, X.W., Meng, X.S.: Fabrication of nano serpentine-potassium acetate intercalation compound and its effect as additive on tribological properties of the fabric self-lubricating liner. Wear 318(1–2), 202–211 (2014)

    Article  Google Scholar 

  38. Yu, T., Lin, J., Xu, J., Chen, T., Lin, S., Tian, X.: Novel polyacrylonitrile/Na-MMT/silica nanocomposite: co-incorporation of two different form nano materials into polymer matrix. Compos. Sci. Technol. 67(15), 3219–3225 (2007)

    Article  Google Scholar 

  39. Xing, J., Deng, B., Liu, Q.: Preparation and thermal properties of polyphenylene sulfide/organic montmorillonite composites. Fiber. Polym. 15(8), 1685–1693 (2014)

    Article  Google Scholar 

  40. Lin, J.M., Ma, C.C.M.: Thermal degradation of phenolic resin/silica hybrid ceramers. Polym. Degrad. Stabil. 69(2), 229–235 (2000)

    Article  Google Scholar 

  41. Ooi, Z.X., Ismail, H., Bakar, A.A.: Thermal properties and aging characteristics of chemically modified oil palm ash-filled natural rubber composites. Iran. Polym. J. 23(9), 723–730 (2014)

    Article  Google Scholar 

  42. Ye, J., Khare, H.S., Burris, D.L.: Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297, 1095–1102 (2013)

    Article  Google Scholar 

  43. Chang, I.T., Sancaktar, E.: Clay dispersion effects on excimer laser ablation of polymer–clay nanocomposites. J. Appl. Polym. Sci. 130(4), 2336–2344 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Yang, Y., Feng, C. et al. Tribological Properties of Fabric Self-Lubricating Liner Based on Organic Montmorillonite (OMMT) Reinforced Phenolic (PF) Nanocomposites as Hybrid Matrices. Tribol Lett 57, 22 (2015). https://doi.org/10.1007/s11249-015-0473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0473-x

Keywords

Navigation