Skip to main content

Grease flow in an elbow channel


The flow of lubricating greases in an elbow channel has been modeled and validated with velocity profiles from flow visualizations using micro-particle image velocimetry. The elbow geometry induces a nonsymmetric distribution of shear stress throughout its cross section, as well as varying shear rates through the transition from the elbow inlet to the outlet. The flow has been modeled both for higher flow rates and for creep flow. The influence of the grease rheology and flow conditions to wall slip, shear banding and an observed stick–slip type of motion observed for low flow rates are presented. The effect on the flow of the applied pressure is also modeled showing that the flow is sensitive to the pressure in the angular (\(\phi \)) direction of the elbow. For high pressures, it is shown that the flow is reversed adjacent to the elbow walls.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Baart, P., Green, T.M., Li, J., Lundström, T.S., Westerberg, L.G., Höglund, E., Lugt, P.M.: The influence of speed, grease type, and temperature on radial contaminant particle migration in a double restriction seal. Tribol. Trans. 54(6), 867–877 (2011). doi:10.1080/10402004.2011.609308

    Article  Google Scholar 

  2. Baart, P., van der Vorst, B., Lugt, P.M., van Ostayen, R.A.J.: Oil-bleeding model for lubricating grease based on viscous flow through a porous microstructure. Tribol. Trans. 53(3), 340–348 (2010). doi:10.1080/10402000903283326

    Article  Google Scholar 

  3. Barnes, H.A., Walters, K.: The yield stress myth. Rheol. Acta 24, 323–326 (1985)

    Article  Google Scholar 

  4. Bauer, W.H., Finkelstein, A.P., Wiberly, S.E.: Flow properties of lithium stearate-oil model greases as a function of soap concentration and temperature. ASLE Trans. 3(2), 215–224 (1960)

    Article  Google Scholar 

  5. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Fluid Mechanics, vol. 1. Wiley, New York (1987). ISBN 0-471-80245-X

    Google Scholar 

  6. Bramhall, A.D., Hutton, J.F.: Wall effect in the flow of lubricating grease in plunger viscosimeters. Br. J. Appl. Phys. 11, 363–369 (1960)

    Article  Google Scholar 

  7. Czarny, R.: The influence of surface material and topography on the wall effect of grease. Lubr. Sci. 14(2), 255–273 (2004)

    Article  Google Scholar 

  8. Dean, W.R.: Fluid motion in a curved channel. Proc. R. Soc. Lond. A 121, 402–420 (1928). doi:10.1098/rspa.1928.0205

    Article  Google Scholar 

  9. Delgado, M.A., Franco, J.M., Partal, P., Gallegos, C.: Experimental study of grease flow in pipelines. Wall slip and air entrainment effects. Chem. Eng. Process. 44, 805–817 (2005)

    Article  Google Scholar 

  10. Dimitriou, C.J., Casanellas, L., Ober, T.J., McKinley, G.H.: Rheo-piv of a shear-banding wormlike micellar solution under large amplitude oscillatory shear. Rheol. Acta 51(5), 394–411 (2012). doi:10.1007/s00397-012-0619-9

    Article  Google Scholar 

  11. Farré-Lladós, J., Casals-Terré, J., Voltas, J., Westerberg, L.G.: The use of rapid prototyping techniques (rpt) to manufacture micro channels suitable for high operation pressures and \(\mu \)piv. Rapid Prototyp. J. (2014, submitted)

  12. Froishteter, G.B., Smorodinskii, E.L., Ishchuck, Y.L., Yurtin, L.O., Radionova, N.V.: Calculation of hydraulic resistance in transport of lubricating greases through pipelines. Chem. Technol. Fuels Oils 12(2), 129–133 (1976)

    Article  Google Scholar 

  13. Gow, G.M.: The cey to grease rheology. In: Transactions of Mechanical Engineering, The Institution of Engineers, Australia, Special Issue Tribology ME vol. 16(3), pp. 202–205 (1991)

  14. Green, T.M., Baart, P., Westerberg, L.G., Lundström, T.S., Höglund, E., Lugt, P.M., Li, J.: A new method to visualize grease flow in a double restriction seal using micro particle image velocimetry. Tribol. Trans. 54(5), 784–792 (2011). doi:10.1080/10402004.2011.604759

    Article  Google Scholar 

  15. Kundu, P.K.: Fluid Mechanics. Academic Press, San Diego (1990). ISBN:0-12-428770-0. Ch. 10. (6-10), 8

  16. Lerouge, S., Berret, J.F.: Shear-induced transitions and instabilities in surfactant wormlike micelles. Adv. Polym. Sci. 230, 1–71 (2010). doi:10.1007/978-3-642-13532-3

    Article  Google Scholar 

  17. Li, J., Höglund, E., Westerberg, L.G., Green, T.M., Lundström, T.S., Lugt, P.M., Baart, P.: \(\mu \)piv measurement of grease velocity profiles in channels with two different types of flow restrictions. Tribol. Int. (2012). doi:10.1016/j.triboint.2012.03.00

  18. Li, J., Westerberg, L.G., Höglund, E., Lugt, P.M., Baart, P.: Lubricating grease shear flow and boundary layers in a concentric cylinder configuration. Tribol. Trans. 57(6) (2014). doi:10.1080/10402004.2014.937886

  19. Li, J., Westerberg, L.G., Höglund, E., Lugt, P.M., Baart, P.: Lubricating grease shear flow and boundary layers in a concentric cylinder configuration. In: 16th Nordic Symposium on Tribology. Danish Technological Institute (2014)

  20. Lugt, P.M.: Grease Lubrication in Rolling Bearings. Wiley Tribology Series (2013) Print ISBN:9781118353912, Online ISBN:9781118483961. doi:10.1002/9781118483961

  21. Lugt, P.M., Velickov, S., Tripp, J.H.: On the chaotic behaviour of grease lubrication in rolling bearings. Tribol. Trans. 52(5), 581–590 (2009). doi:10.1080/10402000902825713

    Article  Google Scholar 

  22. Mahncke, H.E., Tabor, W.: A simple demonstration of flow type in greases. Lubr. Eng. 122, 22–28 (1955)

    Google Scholar 

  23. Pérez-González, J., López-Durán, J.J., Marín-Santibáñez, B.M., Rodríguez-González, F.: Rheo-piv of a yield-stress fluid in a capillary with slip at the wall. Rheol. Acta 51, 937–946 (2012)

    Article  Google Scholar 

  24. Radulescu, A.V., Bonneau, D., Hajjam, M.: A theoretical study of two-dimensional grease flow in regions with discontinuities. Lubr. Sci. 15(2), 163–171 (2003). doi:10.1002/ls.3010150206

    Article  Google Scholar 

  25. Raffel, M., Willert, C.E., Wereley, S.T., Kopenhans, J.: Particle Image Velocimetry. Springer, Berlin (2007). ISBN (print) 978-3-540-72307-3, ISBN (online) 978-3-540-72308-0

  26. Salmon, R.L.: Lectures on Geophysical Fluid Dynamics, Ch. 1.11. Oxford University Press, Oxford (1998). ISBN:0-19-510808-6

  27. Sochi, T.: Slip at fluid–solid interface. Polym. Rev. 51, 309–340 (2011). doi:10.1080/15583724.2011.615961

    Article  Google Scholar 

  28. Tamayol, A., Hooman, K.: Slip-flow in microchannels of non-circular cross sections. J. Fluid. Eng. 133, 091202-091202-8 (2011). doi:10.1115/1.4004591

    Article  Google Scholar 

  29. Westerberg, L.G., Lundström, T.S., Höglund, E., Lugt, P.M.: Investigation of grease flow in a rectangular channel including wall slip effects using micro particle image velocimetry. Tribol. Trans. 53, 600–609 (2010). doi:10.1080/10402001003605566

    Article  Google Scholar 

Download references


The authors would like to thank Dr. Torbjörn Green and Dr. Henrik Lycksam at the Division of Fluid and Experimental Mechanics, LTU for their help with the \(\mu \)PIV measurements. This project has been funded by the Swedish Research Council (VR) and by KIC InnoEnergy.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lars G. Westerberg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westerberg, L.G., Farré-Lladós, J., Li, J. et al. Grease flow in an elbow channel. Tribol Lett 57, 30 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Grease flow
  • Wall slip
  • Shear banding
  • Stick–slip flow
  • Flow separation