Skip to main content
Log in

Effect of Mechanical Properties on Cavitation Erosion Resistance in γ → α′ Phase Transformable Fe–Cr–C–Mn Alloys

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect of mechanical properties on cavitation erosion resistance was investigated for γ → α′ phase transformable Fe–Cr–C–5Mn alloys. When comparing Fe–8Cr–0.7C–5Mn to Fe–16Cr–0.7C–5Mn, the volume fraction of transformed α′-martensite decreased with increasing Cr due to the decrement of the stacking fault energy. In previous study, cavitation erosion resistance increased with increasing volume fraction of transformed martensite. However, the cavitation erosion resistance was improved with increasing Cr. Although the volume fraction of transformed α′-martensite decreased with increasing Cr concentration, Cr addition caused increases in compressive strength and elongation. In the case of γ → α′ phase transformable alloys, it was considered that the strength and fracture strain are more important factors for determining the cavitation erosion resistance than the volume fraction of transformed α′-martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karimi, A.: Cavitation erosion of a duplex stainless steel. Mat. Sci. Eng. 86, 191–203 (1987). doi:10.1016/0025-5416(87)90452-6

    Article  Google Scholar 

  2. Sundararajan, G., Shewmon, P.G.: A new model for the erosion of metals at normal incidence. Wear 84(2), 237–258 (1983). doi:10.1016/0043-1648(83)90266-1

    Article  Google Scholar 

  3. Hattori, S., Tainaka, A.: Cavitation erosion of Ti–Ni base shape memory alloys. Wear 262(1–2), 191–197 (2007). doi:10.1016/j.wear.2006.05.012

    Article  Google Scholar 

  4. Bedkowski, W., Gasiak, G., Lachowicz, C., Lichtarowicz, A., Lagoda, T., Macha, E.: Relations between cavitation erosion resistance of materials and their fatigue strength under random loading. Wear 230(2), 201–209 (1999). doi:10.1016/s0043-1648(99)00105-2

    Article  Google Scholar 

  5. Bregliozzi, G., Schino, A.D., Ahmed, S.I.U., Kenny, J.M., Haefke, H.: Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear 258(1–4), 503–510 (2005)

    Article  Google Scholar 

  6. Wang, Z., Zhu, J.: Cavitation erosion of Fe–Mn–Si–Cr shape memory alloys. Wear 256(1–2), 66–72 (2004). doi:10.1016/s0043-1648(03)00393-4

    Article  Google Scholar 

  7. Wu, S.K., Lin, H.C., Yeh, C.H.: A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy. Wear 244(1–2), 85–93 (2000). doi:10.1016/s0043-1648(00)00443-9

    Article  Google Scholar 

  8. Xiaojun, Z., Procopiak, L.A.J., Souza, N.C., d’Oliveira, A.S.C.M.: Phase transformation during cavitation erosion of a Co stainless steel. Mater. Sci. Eng. A 358(1–2), 199–204 (2003). doi:10.1016/s0921-5093(03)00297-1

    Article  Google Scholar 

  9. Zhang, X.-F., Fang, L.: The effect of stacking fault energy on the cavitation erosion resistance of [alpha]-phase aluminum bronzes. Wear 253(11–12), 1105–1110 (2002). doi:10.1016/s0043-1648(02)00168-0

    Article  Google Scholar 

  10. Wang, Z., Zhu, J.: Effect of phase transformation on cavitation erosion resistance of some ferrous alloys. Mater. Sci. Eng. A 358(1–2), 273–278 (2003)

    Article  Google Scholar 

  11. Fu, W.T., Yang, Y.B., Jing, T.F., Zheng, Y.Z., Yao, M.: The resistance to cavitation erosion of CrMnN stainless steels. J. Mater. Eng. Perform. 7(6), 801–804 (1998). doi:10.1361/105994998770347396

    Article  Google Scholar 

  12. Wang, Z., Zhu, J.: Correlation of martensitic transformation and surface mechanical behavior with cavitation erosion resistance for some iron-based alloys. Wear 256(11–12), 1208–1213 (2004)

    Article  Google Scholar 

  13. Park, M.C., Kim, K.N., Shin, G.S., Kim, S.J.: Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe–Cr–Ni–C alloys. Wear 274–275, 28–33 (2012). doi:10.1016/j.wear.2011.08.011

    Article  Google Scholar 

  14. Patel, J.R., Cohen, M.: Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1(5), 531–538 (1953). doi:10.1016/0001-6160(53)90083-2

    Article  Google Scholar 

  15. Berchiche, N., Franc, J.P., Michel, J.M.: A cavitation erosion model for ductile materials. J. Fluid. Eng. 124(3), 601–606 (2002). doi:10.1115/1.1486474

    Article  Google Scholar 

  16. Talonen, J.: Effect of strain-induced α’-martensite transformation on mechanical properties of metastable austenitic stainless steels. Doctoral dissertation (2007)

  17. Allain, S., Chateau, J.P., Bouaziz, O., Migot, S., Guelton, N.: Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng. A 387–389, 158–162 (2004). doi:10.1016/j.msea.2004.01.059

    Article  Google Scholar 

  18. Woodford, D.A.: Cavitation-erosion-lnduced phase transformations in alloys. Metall. Trans. 3(5), 1137–1145 (1972). doi:10.1007/bf02642445

    Article  Google Scholar 

  19. Park, M.C., Shin, G.S., Yun, J.Y., Heo, J.H., Kim, D.I., Kim, S.J.: Damage mechanism of cavitation erosion in austenite → martensite phase transformable Fe–Cr–C–Mn/Ni alloys. Wear 310(1–2), 27–32 (2014). doi:10.1016/j.wear.2013.12.015

    Article  Google Scholar 

  20. Park, M., Kim, K., Shin, G., Yun, J., Shin, M., Kim, S.: Effects of Ni and Mn on the cavitation erosion resistance of Fe–Cr–C–Ni/Mn austenitic alloys. Tribol. Lett. 52(3), 477–484 (2013). doi:10.1007/s11249-013-0231-x

    Article  Google Scholar 

  21. Brown, L.M., Tholen, A.R.: Shape of three-fold extended nodes. Discuss. Faraday Soc. 38, 35–41 (1964)

    Article  Google Scholar 

  22. Brown, L.M.: The self-stress of dislocations and the shape of extended nodes. Philos. Mag. 10(105), 441–466 (1964). doi:10.1080/14786436408224223

    Article  Google Scholar 

  23. Meged, Y.: Modeling of the initial stage in vibratory cavitation erosion tests by use of a Weibull distribution. Wear 253(9–10), 914–923 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, G.S., Yun, J.Y., Park, M.C. et al. Effect of Mechanical Properties on Cavitation Erosion Resistance in γ → α′ Phase Transformable Fe–Cr–C–Mn Alloys. Tribol Lett 57, 25 (2015). https://doi.org/10.1007/s11249-015-0468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0468-7

Keywords

Navigation