Skip to main content

In Situ Study of Model Organic Friction Modifiers Using Liquid Cell AFM; Saturated and Mono-unsaturated Carboxylic Acids

Abstract

Fatty acids and their derivatives have been used as model organic friction modifiers for almost a century, but there is still debate as to the nature of the boundary films that they form on rubbed surfaces. In this study, in situ liquid cell atomic force microscopy (AFM) is used to monitor the self-assembly of boundary films from solutions of fatty acids in alkanes on to mica surfaces. Because the mica surfaces are wholly immersed in solution, it is possible to study directly changes in the morphology and friction of these films over time and during heating and cooling. It has been found that stearic acid and elaidic acid, which are able to adopt linear molecular configurations, form irregular islands on mica that are tens to hundreds of microns in diameter and typically 1.6 nm thick, corresponding to domains of tilted single monolayers. At a relatively high concentration of 0.01 M, stearic acid in hexadecane forms an almost complete monolayer, but at lower concentrations, in dodecane solution and for elaidic acid solutions, these films remain incomplete after prolonged immersion of more than a day. The films formed by fatty acids on mica are displaced by repeated scanning in contact mode AFM but can be imaged without damage using tapping mode AFM. Rubbed quartz surfaces from a sliding ball-on-disc test were also scanned ex situ using AFM, and these showed that stearic acid forms similar monolayer island films on quartz in macro-scale friction experiments as are found on mica. Oleic acid solutions behave quite differently from stearic acid and elaidic acid, forming irregular globular films on both mica and rubbed quartz surfaces. This is believed to be because its cis-double bond geometry means that, unlike its trans-isomer elaidic acid or saturated stearic acid, it is unable to adopt a linear molecular configuration and so is less able to form close-packed monolayers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM: self-assembly of octadecylamine. Tribol. Lett. (Submitted)

  2. 2.

    Wells, H.M., Southcombe, J.E.: The theory and practice of lubrication: the “Germ” process. J. Soc. Chem. Ind. 39, 51T–60T (1920)

    Article  Google Scholar 

  3. 3.

    Allen, H.S.: Molecular layers in lubrication. Discussion on lubrication, Proc. Phys Soc. Lond. 32, 1s–34s (1919)

  4. 4.

    Hardy, H.B., Doubleday, I.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. A100, 550–557 (1922)

    Article  Google Scholar 

  5. 5.

    Bray, U.B., Moore, C.C., Merrill, D.R.: Improvements in Diesel-Engine Lubricating Oils. SAE Technical Paper No. 390125 (1939)

  6. 6.

    Sirianni, A.F., Puddington, I.E.: Friction Reducing Additives for Lubricants. US Patent 2,689,224 (1954)

  7. 7.

    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Part I Chapter X. Clarendon Press, Oxford (1971)

    Google Scholar 

  8. 8.

    Beare, W.G., Bowden, F.P.: Physical properties of surfaces. I. Kinetic friction. Phil. Trans. R. Soc. Lond. A234, 329–354 (1935)

  9. 9.

    Bowden, F.P., Gregory, J.N., Tabor, D.: Lubrication of metal surfaces by fatty acids. Nature 156, 97–101 (1945)

    Article  Google Scholar 

  10. 10.

    Jahanmir, S.: Chain length effects in boundary lubrication. Wear 102, 331–349 (1985)

    Article  Google Scholar 

  11. 11.

    Studt, P.: Boundary lubrication: adsorption of oil additives on steel and ceramic surfaces and its influence on friction and wear. Tribol. Intern. 22, 111–119 (1989)

    Article  Google Scholar 

  12. 12.

    Langmuir, I.: Mechanical properties of monomolecular films. J. Franklin Inst. 218, 143–171 (1934)

    Article  Google Scholar 

  13. 13.

    Bowden, F.P., Leben, L.: The friction of lubricated metals. Phil. Trans. R. Soc. Lond. A239, 1–27 (1940)

    Article  Google Scholar 

  14. 14.

    Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)

    Article  Google Scholar 

  15. 15.

    Salem, L.: Attractive forces between long saturated chains at short distances. J. Chem. Phys. 37, 2100–2113 (1962)

    Article  Google Scholar 

  16. 16.

    Beltzer, M., Jahanmir. S.: Role of dispersion interactions between hydrocarbon chains in boundary lubrication. ASLE Trans. 30, 47–54 (1987)

  17. 17.

    Spikes, H.A.: Boundary lubrication and boundary films. In: Proceedings of 19th Leeds-Lyon Symposium on Tribology, Leeds, Sept. 1992, Thin Films in Tribology, pp. 331–346. Elsevier, Amsterdam (1993)

  18. 18.

    Tao, Y.T.: Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115, 4350–4358 (1993)

    Article  Google Scholar 

  19. 19.

    Fox, N.J., Tyrer, B., Stachowiak, G.W.: Boundary lubrication performance of free fatty acids in sunflower oil. Tribol. Lett. 16, 275–281 (2004)

    Article  Google Scholar 

  20. 20.

    Lundgren, S.M., Ruths, M., Danerlöv, K., Persson, K.: Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J. Coll. Interf. Sci. 326, 530–5364 (2008)

    Article  Google Scholar 

  21. 21.

    Lundgren, S.M., Persson, K., Mueller, G., Kronberg, B., Clarke, J., Chtaib, M., Claesson, P.M.: Unsaturated fatty acids in alkane solution: adsorption to steel surfaces. Langmuir 23, 10598–10602 (2007)

    Article  Google Scholar 

  22. 22.

    Campen, S., Green, J.H., Lamb, G.D., Atkinson, D., Spikes, H.A.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48, 237–248 (2012)

    Article  Google Scholar 

  23. 23.

    Benitez, J.J., Heredia-Guerrero, J.A., Heredia, A.: Self-assembly of carboxylic acids and hydroxyl derivatives on mica. A qualitative AFM study. J. Phys. Chem. C111, 9465–9470 (2007)

    Google Scholar 

  24. 24.

    Benitez, J.J., Heredia-Guerrero, J.A., Serrano, F.M., Heredia, A.: The role of hydroxyl groups in the self-assembly of long chain alkylhydroxyl carboxylic acids on mica. J. Phys. Chem. C112, 16968–16972 (2008)

    Google Scholar 

  25. 25.

    Zhang, L.-J., Zhang, Y., Zhang, R.-J., Feng, X.-S.: In situ AFM investigations on degradation of self-assembled monolayers on mica: effect of humidity. Coll. Surf. A Physiochem. Eng. Aspects 293, 195–200 (2007)

  26. 26.

    Song, Y., Yao, Y., Chen, C., Cui, K., Wang, L.: Structural investigation of n-hexadecanoic acid multilayers on mica surface: atomic force microscopy study. Appl. Surf. Sci. 254, 3306–3312 (2008)

    Article  Google Scholar 

  27. 27.

    Taylor, C.E., Schwartz, D.K.: Octadecanoic acid self-assembled monolayer growth at sapphire surfaces. Langmuir 19, 2665–2672 (2003)

    Article  Google Scholar 

  28. 28.

    Ostendorf, F., Schmitz, C., Hirth, S., Kuhnle, A., Kolodzief, J.J., Reichling, M.: How flat is an air-cleaved mica surface? Nanotechnol. 19, 305705 (2008)

    Article  Google Scholar 

  29. 29.

    Leng, Y.: Hydration force and dynamic squeeze-out of hydration water under subnanometer confinement. J. Phys.: Condens. Matter 20, 354017 (2008)

    Google Scholar 

  30. 30.

    Murase, A., Ohmori, T.: ToF-SIMS analysis of model compounds of friction modifier adsorbed onto friction surfaces of ferrous materials. Surf. Interface Anal. 31, 191–199 (2001)

    Article  Google Scholar 

  31. 31.

    Dauchot, G., De Castro, E., Repoux, M., Combarieu, R., Montmitonnet, P., Delamare, F.: Application of ToF-SIMS surface analysis to tribochemistry in metal forming processes. Wear 260, 396–404 (2006)

    Article  Google Scholar 

  32. 32.

    Sahoo, R.R., Biswas, S.K.: Frictional response of fatty acids on steel. J. Coll. Interf. Sci. 333, 707–718 (2009)

    Article  Google Scholar 

  33. 33.

    Pashley, R.M.: Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Coll. Interf. Sci. 80, 153–162 (1981)

    Article  Google Scholar 

  34. 34.

    Xu, L., Salmeron, M.: Effects of surface ions on the friction and adhesion properties of mica. Langmuir 14, 2187–2190 (1998)

    Article  Google Scholar 

  35. 35.

    Osman, M.A., Caseri, W.R., Suter, U.W.: H+/Li+ and H+/K+ exchange on delaminated muscovite mica. J. Coll. Interf. Sci. 198, 157–163 (1998)

    Article  Google Scholar 

  36. 36.

    Gaines, G.L., Rutkowski, C.P.: The extraction of aluminum and silicon from muscovite mica by aqueous solutions. J. Phys. Chem. 61, 1439–1441 (1957)

    Article  Google Scholar 

  37. 37.

    Ohler, B.: Practical Advice on the Determination of Cantilever Spring Constants. Application Note AN94, Veeco Instruments Inc. (2007)

  38. 38.

    Benitez, J.J., Salmeron, M.: The influence of chain length and ripening time on the self-assembly of alkylamines on mica. J. Chem. Phys. 125, 044708 (2006)

    Article  Google Scholar 

  39. 39.

    Li, B., Fujii, M., Fukada, K., Kato, T., Seimiya, T.: In situ AFM observation of heterogeneous growth of adsorbed film on cleaved mica surface. Thin Solid Films 312, 20–23 (1998)

    Article  Google Scholar 

  40. 40.

    Xu, S., Cruchon-Dupeyrat, S.J.N., Garno, J.C., Liu, G.-Y., Jennings, G.K., Yong, T.-H., Laibinis, P.E.: In situ studies of thiol self-assembly on gold from solution using atomic force microscopy. J. Chem. Phys. 108, 5002–5012 (1998)

    Article  Google Scholar 

  41. 41.

    Leitner, T., Friedbacher, G., Vallant, T., Brunner, H., Mayer, U., Hoffmann, H.: Investigations of the growth of self-assembled octadecylsiloxane monolayers with atomic force microscopy. Mikrochim. Acta 133, 331–336 (2000)

    Article  Google Scholar 

  42. 42.

    Ulman, A.: An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self Assembly Chapter 2.1, pp. 111–113, Academic Press, New York (1991)

  43. 43.

    Hu, J., Xiao, X.-D., Ogletree, D.F., Salmeron, M.: The structure of molecularly thin films of water on mica in humid environments. Surf. Sci. 344, 221–236 (1995)

    Article  Google Scholar 

  44. 44.

    Miranda, P.B., Xu, L., Shen, Y.R., Salmeron, M.: Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 81, 5876–5879 (1998)

    Article  Google Scholar 

  45. 45.

    Xu, D., Liechti, K.M., Ravi-Chandar, K.: Mechanical probing of icelike water monolayers. Langmuir 25, 12870–12873 (2009)

    Article  Google Scholar 

  46. 46.

    Odelius, M., Bernasconi, M., Parrinello, M.: Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 78, 2855–2858 (1997)

    Article  Google Scholar 

  47. 47.

    Salmeron, M.: Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribol. Lett. 10, 69–79 (2001)

    Article  Google Scholar 

  48. 48.

    Groszek, A.J.: Heats of preferential adsorption of boundary additives at iron oxide/liquid hydrocarbon interfaces. ASLE Trans. 13, 278–287 (1970)

    Article  Google Scholar 

  49. 49.

    Askwith, T.C., Cameron, A., Crouch, R.F.: Chain length of additives in relation to lubricants in thin film and boundary lubrication. Proc. R. Soc. Lond. A 291, 500–519 (1966)

    Article  Google Scholar 

  50. 50.

    Hirano, F., Sakai, T., Kuwano, N., Ohno, N.: Chain matching between hydrocarbon and fatty acid as interfacial phenomena. Tribol. Intern. 20, 186–204 (1987)

    Article  Google Scholar 

  51. 51.

    McNeil, L.E., Grimsditch, M.: Elastic moduli of muscovite mica. J. Phys.: Condens. Matter 5, 1681–1690 (1993)

    Google Scholar 

  52. 52.

    Zhang, G., Wei, Z., Ferrell, R.E.: Elastic modulus and hardness of muscovite and rectorite determined by nano-indentation. Appl. Clay Sci. 43, 271–281 (2009)

    Article  Google Scholar 

  53. 53.

    Bobko, C.P., Ortega, J.A., Ulm, F.-J.: Comment on “Elastic modulus and hardness of muscovite and rectorite determined by nano-indentation” by G. Zhang, Z. Wei and R. E. Ferrel. Appl. Clay Sci. 46, 425–428 (2009)

    Article  Google Scholar 

  54. 54.

    Aleksandrov, K.S., Ryzhova, T.V.: Elastic properties of rock-forming mineral II. Layered silicates. Bull. Acad. Sci. USSR. Geophys. Ser. 12, 1165–1168 (1961)

    Google Scholar 

  55. 55.

    Vaughan, M.T., Guggenheim, S.: Elasticity of muscovite and its relationship to crystal structure. J. Geophys. Res. 91, 4657–4664 (1986)

    Article  Google Scholar 

  56. 56.

    Seo, Y.-S.; Ichikawa, Y.; Kawamura, K.: Stress–strain response of rock-forming minerals by molecular dynamics simulation. J. Soc. Mater. Sci. Jpn 48(3) Appendix, 13–20 (1999)

  57. 57.

    Abousleima, Y., Tran, M., Hoang, S., Ortega, J.O., Ulm, F.-J.: Geomechanics field characterization of Woodford Shale and Barnett Shale with advanced logging tools and nano-indentation on drill cuttings. Lead. Edge 29, 730–736 (2010)

    Article  Google Scholar 

  58. 58.

    Oliver, W., Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  59. 59.

    Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook. Cambridge University Press, New York (1998)

    Google Scholar 

  60. 60.

    Arnold, T., Clarke, S.M.: Thermodynamic investigation of the adsorption of amides on graphite from their liquids and binary mixtures. Langmuir 24, 3325–3335 (2008)

    Article  Google Scholar 

  61. 61.

    Badre, C., Dubot, P., Lincot, D., Pauporte, T., Turmine, M.: Effects of nanorod structure and conformation of fatty acid self-assembled layers on superhydrophobicity of zinc oxide surface. J. Coll. Interf. Sci 316, 233–237 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Castrol Ltd, UK for supporting the study described in this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Campen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Campen, S., Green, J.H., Lamb, G.D. et al. In Situ Study of Model Organic Friction Modifiers Using Liquid Cell AFM; Saturated and Mono-unsaturated Carboxylic Acids. Tribol Lett 57, 18 (2015). https://doi.org/10.1007/s11249-015-0465-x

Download citation

Keywords

  • Organic friction modifier
  • Boundary friction
  • AFM
  • In situ
  • Stearic acid